We explore the use of local algorithms in the design of streaming algorithms for the Maximum Directed Cut problem. Specifically, building on the local algorithm of (Buchbinder, Feldman, Seffi, and Schwartz [14] and Censor-Hillel, Levy, and Shachnai [16]), we develop streaming algorithms for both adversarially and randomly ordered streams that approximate the value of maximum directed cut in bounded-degree graphs. In n-vertex graphs, for adversarially ordered streams, our algorithm uses O (n1-Ω(1)) (sub-linear) space and for randomly ordered streams, our algorithm uses logarithmic space. Moreover, both algorithms require only one pass over the input stream. With a constant number of passes, we give a logarithmic-space algorithm which works even on graphs with unbounded degree on adversarially ordered streams. Our algorithms achieve any fixed constant approximation factor less than 1/2. In the single-pass setting, this is tight: known lower bounds show that obtaining any constant approximation factor greater than 1/2 is impossible without using linear space in adversarially ordered streams (Kapralov and Krachun [37]) and space in randomly ordered streams, even on bounded degree graphs (Kapralov, Khanna, and Sudan [35]). In terms of techniques, our algorithms partition the vertices into a small number of different types based on the structure of their local neighborhood, ensuring that each type carries enough information about the structure to approximately simulate the local algorithm on a vertex with that type. We then develop tools to accurately estimate the frequency of each type. This allows us to simulate an execution of the local algorithm on all vertices, and thereby approximate the value of the maximum directed cut.
more »
« less
This content will become publicly available on January 12, 2026
Streaming Algorithms via Local Algorithms for Maximum Directed Cut
We explore the use of local algorithms in the design of streaming algorithms for the Maximum Directed Cut problem. Specifically, building on the local algorithm of (Buchbinder, Feldman, Seffi, and Schwartz [14] and Censor-Hillel, Levy, and Shachnai [16]), we develop streaming algorithms for both adversarially and randomly ordered streams that approximate the value of maximum directed cut in bounded-degree graphs. In n-vertex graphs, for adversarially ordered streams, our algorithm uses O (n1-Ω(1)) (sub-linear) space and for randomly ordered streams, our algorithm uses logarithmic space. Moreover, both algorithms require only one pass over the input stream. With a constant number of passes, we give a logarithmic-space algorithm which works even on graphs with unbounded degree on adversarially ordered streams. Our algorithms achieve any fixed constant approximation factor less than 1/2. In the single-pass setting, this is tight: known lower bounds show that obtaining any constant approximation factor greater than 1/2 is impossible without using linear space in adversarially ordered streams (Kapralov and Krachun [37]) and space in randomly ordered streams, even on bounded degree graphs (Kapralov, Khanna, and Sudan [35]). In terms of techniques, our algorithms partition the vertices into a small number of different types based on the structure of their local neighborhood, ensuring that each type carries enough information about the structure to approximately simulate the local algorithm on a vertex with that type. We then develop tools to accurately estimate the frequency of each type. This allows us to simulate an execution of the local algorithm on all vertices, and thereby approximate the value of the maximum directed cut.
more »
« less
- Award ID(s):
- 2152413
- PAR ID:
- 10574533
- Publisher / Repository:
- Society for Industrial and Applied Mathematics
- Date Published:
- ISSN:
- 978-1-61197-832-2
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The random order graph streaming model has received significant attention recently, with problems such as matching size estimation, component counting, and the evaluation of bounded degree constant query testable properties shown to admit surprisingly space efficient algorithms. The main result of this paper is a space efficient single pass random order streaming algorithm for simulating nearly independent random walks that start at uniformly random vertices. We show that the distribution of k-step walks from b vertices chosen uniformly at random can be approximated up to error ∊ per walk using  words of space with a single pass over a randomly ordered stream of edges, solving an open problem of Peng and Sohler [SODA '18]. Applications of our result include the estimation of the average return probability of the k-step walk (the trace of the kth power of the random walk matrix) as well as the estimation of PageRank. We complement our algorithm with a strong impossibility result for directed graphs.more » « less
-
We give an $$\widetilde{O}(\sqrt{n})$$-space single-pass 0.483-approximation streaming algorithm for estimating the maximum directed cut size (Max-DICUT) in a directed graph on n vertices. This improves over an $$O(\log n)$$-space $4 / 9 < 0.45$ approximation algorithm due to Chou, Golovnev, and Velusamy (FOCS 2020), which was known to be optimal for $$o(\sqrt{n})$$-space algorithms. Max-DICUT is a special case of a constraint satisfaction problem (CSP). In this broader context, we give the first CSP for which algorithms with $$\widetilde{O}(\sqrt{n})$$- space can provably outperform $$o(\sqrt{n})$$- space algorithms. The key technical contribution of our work is development of the notions of a first-order snapshot of a (directed) graph and of estimates of such snapshots. These snapshots can be used to simulate certain (non-streaming) Max-DICUT algorithms, including the “oblivious” algorithms introduced by Feige and Jozeph (Algorithmica, 2015), who showed that one such algorithm Previous work of the authors (SODA 2023) studied the restricted case of bounded-degree graphs, and observed that in this setting, it is straightforward to estimate the snapshot with $$\ell_{1}$$ errors and this suffices to simulate oblivious algorithms. But for unbounded-degree graphs, even defining an achievable and sufficient notion of estimation is subtle. We describe a new notion of snapshot estimation and prove its sufficiency using careful smoothing techniques, and then develop an algorithm which sketches such an estimate via a delicate process of intertwined vertex- and edge-subsampling. Prior to our work, the only streaming algorithms for any CSP on general instances were based on generalizations of the $$O(\log n)$$-space algorithm for Max-DICUT, and can roughly be characterized as based on “zeroth” order snapshots. Our work thus opens the possibility of a new class of algorithms for approximating CSPs by demonstrating that more sophisticated snapshots can outperform cruder ones in the case of Max-DICUT.more » « less
-
Nikhil, Bansal; Nagarajan, Viswanath (Ed.)We initiate a study of the streaming complexity of constraint satisfaction problems (CSPs) when the constraints arrive in a random order. We show that there exists a CSP, namely Max-DICUT, for which random ordering makes a provable difference. Whereas a 4/9 ≈ 0.445 approximation of DICUT requires space with adversarial ordering, we show that with random ordering of constraints there exists a 0.483-approximation algorithm that only needs O(log n) space. We also give new algorithms for Max-DICUT in variants of the adversarial ordering setting. Specifically, we give a two-pass O(log n) space 0.483-approximation algorithm for general graphs and a single-pass space 0.483-approximation algorithm for bounded-degree graphs. On the negative side, we prove that CSPs where the satisfying assignments of the constraints support a one-wise independent distribution require -space for any non-trivial approximation, even when the constraints are randomly ordered. This was previously known only for adversarially ordered constraints. Extending the results to randomly ordered constraints requires switching the hard instances from a union of random matchings to simple Erdős-Renyi random (hyper)graphs and extending tools that can perform Fourier analysis on such instances. The only CSP to have been considered previously with random ordering is Max-CUT where the ordering is not known to change the approximability. Specifically it is known to be as hard to approximate with random ordering as with adversarial ordering, for space algorithms. Our results show a richer variety of possibilities and motivate further study of CSPs with randomly ordered constraints.more » « less
-
A streaming algorithm is considered to be adversarially robust if it provides correct outputs with high probability even when the stream updates are chosen by an adversary who may observe and react to the past outputs of the algorithm. We grow the burgeoning body of work on such algorithms in a new direction by studying robust algorithms for the problem of maintaining a valid vertex coloring of an n-vertex graph given as a stream of edges. Following standard practice, we focus on graphs with maximum degree at most Δ and aim for colorings using a small number f(Δ) of colors. A recent breakthrough (Assadi, Chen, and Khanna; SODA 2019) shows that in the standard, non-robust, streaming setting, (Δ+1)-colorings can be obtained while using only Õ(n) space. Here, we prove that an adversarially robust algorithm running under a similar space bound must spend almost Ω(Δ²) colors and that robust O(Δ)-coloring requires a linear amount of space, namely Ω(nΔ). We in fact obtain a more general lower bound, trading off the space usage against the number of colors used. From a complexity-theoretic standpoint, these lower bounds provide (i) the first significant separation between adversarially robust algorithms and ordinary randomized algorithms for a natural problem on insertion-only streams and (ii) the first significant separation between randomized and deterministic coloring algorithms for graph streams, since deterministic streaming algorithms are automatically robust. We complement our lower bounds with a suite of positive results, giving adversarially robust coloring algorithms using sublinear space. In particular, we can maintain an O(Δ²)-coloring using Õ(n √Δ) space and an O(Δ³)-coloring using Õ(n) space.more » « less
An official website of the United States government
