skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 21, 2026

Title: A two hollow-fiber-set membrane module for air gap membrane distillation with high thermal efficiency
An air gap membrane distillation (AGMD) module was developed by incorporating a poly(etheretherketone) (PEEK) hollow fiber membrane (HFM) having a nonporous wall. This PEEK HFM was placed inside a polyvinylidene fluoride (PVDF) hydrophobic porous wall HFM with a larger bore diameter. The outside diameter (OD) of PVDF HFM is 925 μm, small enough to be capable of achieving a high surface area packing density of 1297 m2/m3. The air gap thickness was very small, 121 μm. Hot brine flowed on the outside of the PVDF HFM; the colder liquid was passed through the lumen of the PEEK-based condenser hollow fibers. Water vapor condensed in the air gap formed between the inner surface of the porous PVDF HFM and the outer surface of the nonporous condenser PEEK fiber. With 85o C hot brine flowing at 40 mL•min􀀀1 and 5o C coolant flowing at 8 mL•min􀀀1, the water vapor flux was 9.05 kg/m2•h with a salt rejection of 98.7 %. Simulation by COMSOL Multiphysics predicted water flux and interfacial temperature of HFM, which supported the experimental observations. Moreover, the influence of module geometry, membrane characteristics and internal flow configuration on permeate flux, thermal efficiency, gained output ratio (GOR), and temperature and concentration polarization were evaluated. Principal component analysis (PCA) was used to illustrate the interconnections among various parameters and their respective contributions to water flux and other performance indicators. Air gap thickness had the strongest influence on temperature polarization.  more » « less
Award ID(s):
2310866
PAR ID:
10574558
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Desalination
Volume:
604
Issue:
C
ISSN:
0011-9164
Page Range / eLocation ID:
118683
Subject(s) / Keyword(s):
Air gap membrane distillation Seawater desalination Thermal efficiency Hollow fiber membranes Membrane module
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Increasing water demand coupled with projected climate change puts the Southwestern United States at the highest risk of water sustainability by 2050. Membrane distillation offers a unique opportunity to utilize the substantial, but largely untapped geothermal brackish groundwater for desalination to lessen the stress. Two types of hydrophobic, microporous hollow fiber membranes (HFMs), including polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), were evaluated for their effectiveness in direct contact membrane distillation (DCMD). Water flux and salt rejection were measured as a function of module packing density and length in lab-scale systems. The PVDF HFMs generally exhibited higher water flux than the PTFE HFMs possibly due to thinner membrane wall and higher porosity. As the packing density or module length increased, water flux declined. The water production rate per module, however, increased due to the larger membrane surface area. A pilot-scale DCMD system was deployed to the 2nd largest geothermally-heated greenhouse in the United States for field testing over a duration of about 22 days. The results demonstrated the robustness of the DCMD system in the face of environmental fluctuation at the facility. 
    more » « less
  2. Direct contact membrane distillation (DCMD) for desalination is attractive for high salt concentrations if low cost steam/waste heat is available and waste brine disposal cost for inland desalination is factored in. A number of innovations have taken place in DCMD in terms of the structure of the porous hydrophobic membrane. Composite membranes are of increasing interest. Composite membrane structures of great interest include a thin hydrophobic porous layer over a porous hydrophilic layer of polyvinylidene fluoride (PVDF) or a thin porous hydrophobic layer over a more conventional hydrophobic porous membrane. These membranes can be in the form of an integral composite or a stacked composite or a laminated composite. A facile method of fabricating such integral composite membranes is plasma polymerization under vacuum. A class of such membranes yielding quite high water vapor fluxes have been characterized using a variety of characterization techniques: Contact angle, liquid entry pressure (LEP), bubble-point pressure, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM). Stacked composites of a hydrophobic ePTFE membrane over a hydrophilic PVDF membrane or a hydrophobic PVDF membrane over another hydrophobic PVDF membrane were also studied. Novel conditions created lead to very high water vapor fluxes compared to those from conventional hydrophobic membranes supported on a mesh support. 
    more » « less
  3. Abstract Tangential flow filtration is advantageous for bioreactor clarification as the permeate stream could be introduced directly to the subsequent product capture step. However, membrane fouling coupled with high product rejection has limited its use. Here, the performance of a reverse asymmetric hollow fiber membrane where the more open pore structure faces the feed stream and the barrier layer faces the permeate stream has been investigated. The open surface contains pores up to 40 μm in diameter while the tighter barrier layer has an average pore size of 0.4 μm. Filtration of Chinese hamster ovary cell feed streams has been investigated under conditions that could be expected in fed batch operations. The performance of the reverse asymmetric membrane is compared to that of symmetric hollow fiber membranes with nominal pore sizes of 0.2 and 0.65 μm. Laser scanning confocal microscopy was used to observe the locations of particle entrapment. The throughput of the reverse asymmetric membrane is significantly greater than the symmetric membranes. The membrane stabilizes an internal high permeability cake that acts like a depth filter. This stabilized cake can remove particulate matter that would foul the barrier layer if it faced the feed stream. An empirical model has been developed to describe the variation of flux and transmembrane pressure drop during filtration using reverse asymmetric membranes. Our results suggest that using a reverse asymmetric membrane could avoid severe flux decline associated with fouling of the barrier layer during bioreactor clarification. 
    more » « less
  4. One of the biggest challenges for direct contact membrane distillation (DCMD) in treating wastewater from flue gas desulfurization (FGD) is the rapid deterioration of membrane performance resulting from precipitate fouling. Chemical pretreatment, such as lime-soda ash softening, has been used to mitigate the issue, however, with significant operating costs. In this study, mechanical vibration of 42.5 Hz was applied to lab-scale DCMD systems to determine its effectiveness of fouling control for simulated FGD water. Liquid entry pressure and mass transfer limit of the fabricated hollow fiber membranes were determined and used as the operational constraints in the fouling experiments so that the observed membrane performance was influenced solely by precipitate fouling. Minimal improvement of water flux was observed when applying vibration after significant (~16%) water-flux decline. Initiating vibration at the onset of the experiments prior to the exposure of foulants, however, was promising for the reduction of membrane fouling. The water-flux decline rate was reduced by about 50% when compared to the rate observed without vibration. Increasing the module packing density from 16% to 50% resulted in a similar rate of water-flux decline, indicating that the fouling propensity was not increased with packing density in the presence of vibration. 
    more » « less
  5. Traditional protective garments loaded with activated carbons to remove toxic gases are very bulky. Novel graphene oxide (GO) flake-based composite lamellar membrane structure is being developed as a potential component of a garment for protection against chemical warfare agents (CWAs) represented here by simulants, dimethyl methyl phosphonate (DMMP) (a sarin-simulant), and 2-chloroethyl ethyl sulfide (CEES) (a simulant for sulfur mustard), yet allowing a high-moisture transmission rate. GO flakes of dimensions 300−800 nm, 0.7−1.2 nm thickness and dispersed in an aqueous suspension were formed into a membrane by vacuum filtration on a porous poly(ether sulfone) (PES) or poly(ether ether ketone) (PEEK) support membrane for noncovalent π−π interactions with GO flakes. After physical compression of such a membrane, upright cup tests indicated that it can block toluene for 3−4 days and DMMP for 5 days while exhibiting excellent water vapor permeation. Further, they display very low permeances for small-molecule gases/vapors. The GO flakes underwent crosslinking later with ethylenediamine (EDA) introduced during the vacuum filtration followed by physical compression and heating. With a further spray coating of polyurethane (PU), these membranes could be bent without losing barrier properties vis-à-vis the CWA simulant DMMP for 5 days; a membrane not subjected to bending blocked DMMP for 15 days. For the PEEK-EDA-GO-PU compressed membranes after bending, the separation factors of H2O over other species for low gas flow rates in the dynamic moisture permeation cell (DMPC) are: αH2O−He is 42.3; αH2O−N2 is 110; and αH2O−ethane is 1800. At higher gas flow rates in the DMPC, the moisture transmission rate goes up considerably due to reduced boundary layer resistances and exceeds the threshold water vapor flux of 2000 g/(m2·day) that defines a breathable fabric. This membrane displayed considerable resistance to permeation by CEES as well. The PES-EDA-GO-PU-compressed membrane shows good mechanical property under tensile strength tests. 
    more » « less