skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 25, 2026

Title: Prevalence of pelagic diatoms and harmful algae in tellinid bivalve diets during record low sea ice in the Pacific Arctic determined by DNA metabarcoding
Understanding changes at the base of the marine food web in the rapidly transforming Arctic is essential for predicting and evaluating ecosystem dynamics. The northern Bering Sea experienced record low sea ice in 2018, followed by the second lowest in 2019, highlighting the urgency of the issue for this region. In this study, we investigated the diet of the clamMacoma calcareain the Pacific Arctic using DNA metabarcoding, employing 18S and rbcL markers to identify dietary components. Our findings revealed a strong dependence on pelagic diatoms, particularlyChaetocerossp., with a near absence of ice algae in the clam diet. This pattern reflects the lack of lipid-rich ice algal production during these low sea ice events. Additionally, our analysis detected algae capable of producing harmful toxins, notablyAlexandriumdinoflagellates, in the clam diet, underscoring the need for increased monitoring due to potential ecosystem and human health risks. This study demonstrates the utility of DNA metabarcoding in unraveling the complex dynamics of Arctic marine food webs and pelagic-benthic coupling, providing a glimpse of future conditions in a rapidly changing environment.  more » « less
Award ID(s):
1917469
PAR ID:
10574564
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Frontiers in Marine Science
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
12
ISSN:
2296-7745
Subject(s) / Keyword(s):
Pacific Arctic. pelagic diatoms, walrus diet, sea, DNA metabarcoding
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mancinelli, Giorgio (Ed.)
    The expected reduction of ice algae with declining sea ice may prove to be detrimental to the Pacific Arctic ecosystem. Benthic organisms that rely on sea ice organic carbon (iPOC) sustain benthic predators such as the Pacific walrus ( Odobenus rosmarus divergens ). The ability to track the trophic transfer of iPOC is critical to understanding its value in the food web, but prior methods have lacked the required source specificity. We analyzed the H-Print index, based on biomarkers of ice algae versus phytoplankton contributions to organic carbon in marine predators, in Pacific walrus livers collected in 2012, 2014 and 2016 from the Northern Bering Sea (NBS) and Chukchi Sea. We paired these measurements with stable nitrogen isotopes ( δ 15 N) to estimate trophic position. We observed differences in the contribution of iPOC in Pacific walrus diet between regions, sexes, and age classes. Specifically, the contribution of iPOC to the diet of Pacific walruses was higher in the Chukchi Sea (52%) compared to the NBS (30%). This regional difference is consistent with longer annual sea ice persistence in the Chukchi Sea. Within the NBS, the contribution of iPOC to walrus spring diet was higher in females (~45%) compared to males (~30%) for each year (p < 0.001), likely due to specific foraging behavior of females to support energetic demands associated with pregnancy and lactation. Within the Chukchi Sea, the iPOC contribution was similar between males and females, yet higher in juveniles than in adults. Despite differences in the origin of organic carbon fueling the system (sea ice versus pelagic derived carbon), the trophic position of adult female Pacific walruses was similar between the NBS and Chukchi Sea (3.2 and 3.5, respectively), supporting similar diets (i.e. clams). Given the higher quality of organic carbon from ice algae, the retreat of seasonal sea ice in recent decades may create an additional vulnerability for female and juvenile Pacific walruses and should be considered in management of the species. 
    more » « less
  2. Abstract Environmental conditions in the Chukchi Sea are changing rapidly and may alter the abundance and distribution of marine species and their benthic prey. We used a metabarcoding approach to identify potentially important prey taxa from Pacific walrus (Odobenus rosmarus divergens) fecal samples (n= 87). Bivalvia was the most dominant class of prey (66% of all normalized counts) and occurred in 98% of the samples. Polychaeta and Gastropoda occurred in 70% and 62% of the samples, respectively. The remaining nine invertebrate classes comprised <21% of all normalized counts. The common occurrence of these three prey classes is consistent with examinations of walrus stomach contents. Despite these consistencies, biases in the metabarcoding approach to determine diet from feces have been highlighted in other studies and require further study, in addition to biases that may have arisen from our opportunistic sampling. However, this noninvasive approach provides accurate identification of prey taxa from degraded samples and could yield much‐needed information on shifts in walrus diet in a rapidly changing Arctic. 
    more » « less
  3. Abstract Sea ice primary production is considered a valuable energy source for Arctic marine food webs, yet the extent remains unclear through existing methods. Here we quantify ice algal carbon signatures using unique lipid biomarkers in over 2300 samples from 155 species including invertebrates, fish, seabirds, and marine mammals collected across the Arctic shelves. Ice algal carbon signatures were present within 96% of the organisms investigated, collected year-round from January to December, suggesting continuous utilization of this resource despite its lower proportion to pelagic production. These results emphasize the importance of benthic retention of ice algal carbon that is available to consumers year-round. Finally, we suggest that shifts in the phenology, distribution and biomass of sea ice primary production anticipated with declining seasonal sea ice will disrupt sympagic-pelagic-benthic coupling and consequently the structure and the functioning of the food web which is critical for Indigenous Peoples, commercial fisheries, and global biodiversity. 
    more » « less
  4. Abstract The Arctic Ocean is more susceptible to ocean acidification than other marine environments due to its weaker buffering capacity, while its cold surface water with relatively low salinity promotes atmospheric CO2uptake. We studied how sea‐ice microbial communities in the central Arctic Ocean may be affected by changes in the carbonate system expected as a consequence of ocean acidification. In a series of four experiments during late summer 2018 aboard the icebreakerOden, we addressed microbial growth, production of dissolved organic carbon (DOC) and extracellular polymeric substances (EPS), photosynthetic activity, and bacterial assemblage structure as sea‐ice microbial communities were exposed to elevated partial pressures of CO2(pCO2). We incubated intact, bottom ice‐core sections and dislodged, under‐ice algal aggregates (dominated byMelosira arctica) in separate experiments under approximately 400, 650, 1000, and 2000 μatm pCO2for 10 d under different nutrient regimes. The results indicate that the growth of sea‐ice algae and bacteria was unaffected by these higher pCO2levels, and concentrations of DOC and EPS were unaffected by a shifted inorganic C/N balance, resulting from the CO2enrichment. These central Arctic sea‐ice microbial communities thus appear to be largely insensitive to short‐term pCO2perturbations. Given the natural, seasonally driven fluctuations in the carbonate system of sea ice, its resident microorganisms may be sufficiently tolerant of large variations in pCO2and thus less vulnerable than pelagic communities to the impacts of ocean acidification, increasing the ecological importance of sea‐ice microorganisms even as the loss of Arctic sea ice continues. 
    more » « less
  5. Abstract We use a modern Earth system model to approximate the relative importance of ice versus temperature on Arctic marine ecosystem dynamics. We show that while the model adequately simulates ice volume, water temperature, air‐sea CO2flux, and annual primary production in the Arctic, itunderestimates upper water column nitrate across the region. This nitrate bias is likely responsible for the apparent underestimation of ice algae production. Despite this shortcoming, the model appears to be a useful tool for exploring the impacts of environmental change on phytoplankton production and carbon dynamics over the Arctic Ocean. Our experiments indicate that under a warmer climate scenario, the percentage of ocean warming that could be apportioned to a reduction in ice area ranged from 11% to 100%, while decreasing ice area could account for 22–100% of the increase in annual ocean primary production. The change to CO2air‐sea flux in response to ice and temperature changes averaged an Arctic‐wide 5.5 Tg C yr−1(3.5%) increase, into the ocean. This increased carbon sink may be short‐lived, as ice cover continues to decrease and the ocean warms. The change in carbon fixation from phytoplankton in response to increased temperatures and reduced ice was generally more than a magnitude larger than the changes to CO2flux, highlighting the importance of fully considering changes to the marine ecosystem when assessing Arctic carbon cycle dynamics. Our work demonstrates the importance of ice dynamics in controlling ocean warming and production and thus the need for well‐behaved ice and BGC models within Earth system models if we hope to accurately predict Arctic changes. 
    more » « less