Hybrid approaches to shoreline protection, where natural (“green”) features are combined with hardened (“gray”) infrastructure, are increasingly used to protect coastlines from erosion and flood-based hazards. Our understanding of hybrid systems is limited, and it is unknown whether the components of these systems interact in any meaningful sense to provide flood reduction benefits that are greater or less than “the sum of the parts.” In this study, a large-scale physical model was used to investigate the overtopping of a vertical wall protected by a hybrid system where an idealized Rhizophora mangrove forest of moderate cross-shore width fronted a rubble-mound revetment. Configurations included the wall alone, the wall with a low- or intermediate-density mangrove forest without the revetment, the wall with the revetment, and the wall with an intermediate- or high-density mangrove forest and the revetment. The study isolated the reduction in overtopping of the wall by the revetment component, the mangrove forest component, and the interaction between the components of the hybrid system. The total reduction by the hybrid system was estimated within 5% accuracy as the sum of the reduction by each component minus the product of the component reductions. Comparison of the proportional reduction in overtopping by the mangrove forest on the wall alone and the wall with the revetment indicated that the mangrove forest reduced the overtopping of the revetment by approximately the same proportion that the forest reduced the overtopping of the wall. Therefore, (1) total overtopping reduction by the hybrid system was modeled as the reduction expected from the green and gray components in series. Additional analysis showed that (2) for the same wave conditions, a mangrove forest of moderate cross-shore width can have equal or greater protective benefits than a coastal revetment, (3) there is an exponential relationship between the discharge rate and the forest density, and (4) the mangrove forest, the revetment, and the hybrid system all provided greater reduction in overtopping as wave steepness increased. The tests in this study were conducted without wave breaking, with constant freeboard and water depth, with a specific revetment geometry, and without a mangrove canopy. Therefore, these results should be interpreted with caution if used for engineering design. 
                        more » 
                        « less   
                    
                            
                            Large-Scale Physical Model Study of Wave Overtopping Mitigation by Hybrid Infrastructure:Subtitle
                        
                    
    
            We constructed a hybrid system consisting of a 19.6-m mangrove forest and a rubble-mound revetment seaward of a vertical wall. We investigated the mangrove forest and revetment features separately and in combination to compare the mitigating effects of the features on the overtopping of the vertical wall. We considered 3 different forest densities and tested regular, single- and double peaked spectra, and transient (tsunami-like) wave regimes. Water surface elevations and flow velocities were measured along the test section, and overtopping volumes were measured shoreward of the vertical wall. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2110439
- PAR ID:
- 10574696
- Publisher / Repository:
- Designsafe-CI
- Date Published:
- Subject(s) / Keyword(s):
- Engineering With Nature Mangroves Physical Modeling Overtopping Hybrid Green-Gray Coastal Infrastructure
- Format(s):
- Medium: X
- Institution:
- Large Wave Flume and Directional Wave Basin - Oregon State University
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Wave overtopping of shoreline infrastructure can lead to significant flooding and consequent loss of life, impairment of transportation systems, and ecological damage. Coastal defenses against overtopping traditionally include hard structures, such as seawalls and revetments, and design guidelines for these structures, e.g., the EurOtop manual (Van der Meer et al., 2018), have been developed from empirical studies of overtopping. Recently, natural and nature-based features (NNBF) including mangroves, wetlands, reefs, and other systems have gained attention as alternatives to conventional engineered coastal protection systems. Field observations have identified the potential of emergent vegetation, particularly mangrove forests, to mitigate damage during extreme coastal flood events (Alongi, 2008; Tomiczek et al., 2020). However, there is a lack of research on engineering NNBF systems to achieve specific design requirements for overtopping protection. Hybrid or multi-tiered approaches to shoreline protection have also been proposed, where natural (“green”) features are combined with hardened (“gray”) infrastructure to protect coastlines and near-coast assets from erosion and/or flood-based hazards. For overtopping mitigation, hybrid designs can add the performance provided by emergent vegetation to the services of a revetment or a wall. It is unknown whether the green and gray features in a hybrid system perform independently and can be considered as separate design elements, or if the inclusion of one feature affects the performance of the other such that the hybrid system must be considered as a single, complex design element. This study constructed a large-scale physical model to investigate the overtopping performance of a hybrid system with an idealized Rhizophora mangrove forest seaward of a revetment abutting a vertical wall compared to that performance of the wall fronted by the revetment only, the wall fronted by vegetation only, and the wall alone.more » « less
- 
            This paper presents results of a reduced (1:8) scale experiment investigating the performance of hybrid structural (gray) and natural-based (green) infrastructure for wave overtopping reduction. Experiments were scaled to a 1:8 geometric scale based on 1:2-scale experiments conducted during the Summer of 2023 at Oregon State University. Seven wave conditions were tested, with (model-scale) wave periods ranging from 1 to 2 seconds and wave heights ranging from 6.0 to 7.5 cm. These wave conditions were conducted throughout two configurations: a seawall-only (baseline) configuration and a configuration with the seawall in combination with a mangrove forest installed seaward of the wall. The total volume of overtopped water was measured for each wave condition. Results indicated that adding mangroves reduced overtopping for all wave conditions, with an average of 32.1% reduction in overtopped volume compared to the baseline configurations. This reduction falls within the range of preexisting overtopping rates. Results from these experiments can assist engineers in understanding the performance of hybrid coastal infrastructure to design effective and sustainable shoreline protection.more » « less
- 
            A prototype-scale physical model was used to study wave height attenuation through an idealized mangrove forest and the resulting reduction of wave forces and pressures on a vertical wall. An 18 m transect of a Rhizophora forest was constructed using artificial trees, considering a baseline and two mangrove stem density configurations. Wave heights seaward, throughout, and shoreward of the forest and pressures on a vertical wall landward of the forest were measured. Mangroves reduced wave-induced forces by 4%–43% for random waves and 2%–38% for regular waves. For nonbreaking wave cases, the shape of the pressure distribution was consistent, implying that the presence of the forest did not change wave-structure interaction processes. Analytical methods for determining nonbreaking wave-induced loads provided good estimations of measured values when attenuated wave heights were used in equations. The ratio of negative to positive force ranged between 0.14 and 1.04 for regular waves and 0.31 to 1.19 for random waves, indicating that seaward forces can be significant and may contribute to destabilization of seawalls during large storms. These results improve the understanding of wave-vegetation-structure interaction and inform future engineering guidelines for calculating expected design load reductions on structures sheltered by emergent vegetation.more » « less
- 
            This project investigated the potential of mangroves of modest cross-shore thickness to attenuate wave heights and reduce loads on sheltered structures through a prototype-scale physical model. Two forest densities and a baseline case were considered, and transient, regular, and irregular waves generated over the 18 m mangrove test section. Water surface elevations seaward, throughout, and leeward of the mangrove forest were measured, as well as pressures on a test wall positioned behind the forest test section.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
