skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Lead (Pb) Concentrations Across 22 Species of Butterflies Correlate with Soil and Air Lead and Decreased Wing Size in an Urban Field Study
Award ID(s):
2045382
PAR ID:
10575023
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Science of The Total Environment
Volume:
969
Issue:
C
ISSN:
0048-9697
Page Range / eLocation ID:
178900
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Despite the high-efficiency and low-cost prospect for perovskite solar cells, great concerns of lead toxicity and instability remain for this technology. Here, we report an encapsulation strategy for perovskite modules based on lead-adsorbing ionogel, which prevents lead leakage and withstand long-term stability tests. The ionogel layers integrated on both sides of modules enhance impact resistance. The self-healable ionogel can prevent water permeation into the perovskite layer and adsorb lead that might leak. The encapsulated devices pass the damp heat and thermal cycling accelerated stability tests according to International Electrotechnical Commission 61215 standard. The ionogel encapsulation reduces lead leakage to undetectable level after the hail-damaged module is soaked in water for 24 hours. Even being rolled over by a car followed by water soaking for 45 days, the ionogel encapsulation reduces lead leakage by three orders of magnitude. This work provides a strategy to simultaneously address lead leakage and stability for perovskite modules. 
    more » « less
  3. Ancient texts and archaeological evidence indicate substantial lead exposure during antiquity that potentially impacted human health. Although lead exposure routes were many and included the use of glazed tablewares, paints, cosmetics, and even intentional ingestion, the most significant for the nonelite, rural majority of the population may have been through background air pollution from mining and smelting of silver and lead ores that underpinned the Roman economy. Here, we determined potential health effects of this air pollution using Arctic ice core measurements of Roman-era lead pollution, atmospheric modeling, and modern epidemiology-based relationships between air concentrations, blood lead levels (BLLs), and cognitive decline. Findings suggest air lead concentrations exceeded 150 ng/m3near metallurgical emission sources, with average enhancements of >1.0 ng/m3over Europe during the Pax Romana apogee of the Roman Empire. The result was blood lead enhancements in young children of about 2.4 µg/dl above an estimated Neolithic background of 1.0 µg/dl, leading to widespread cognitive decline including a 2.5-to-3 point reduction in intelligence quotient throughout the Roman Empire. 
    more » « less