Abstract Organofunctionalized tetranuclear clusters [(MIICl)2(VIVO)2{((HOCH2CH2)(H)N(CH2CH2O))(HN(CH2CH2O)2)}2] (1, M=Co,2: M=Zn) containing an unprecedented oxometallacyclic {M2V2Cl2N4O8} (M=Co, Zn) framework have been prepared by solvothermal reactions. The new oxo‐alkoxide compounds were fully characterized by spectroscopic methods, magnetic susceptibility measurement, DFT and ab initio computational methods, and complete single‐crystal X‐ray diffraction structure analysis. The isostructural clusters are formed of edge‐sharing octahedral {VO5N} and trigonal bipyramidal {MO3NCl} units. Diethanolamine ligates the bimetallic lacunary double cubane core of1and2in an unusual two‐mode fashion, unobserved previously. In the crystalline state, the clusters of1and2are joined by hydrogen bonds to form a three‐dimensional network structure. Magnetic susceptibility data indicate weakly antiferromagnetic interactions between the vanadium centers [Jiso(VIV−VIV)=−5.4(1); −3.9(2) cm−1], and inequivalent antiferromagnetic interactions between the cobalt and vanadium centers [Jiso(VIV−CoII)=−12.6 and −7.5 cm−1] contained in1.
more »
« less
IR spectroscopic characterization of 3d transition metal carbene cations, FeCH 2 + and CoCH 2 + : periodic trends and a challenge for DFT approaches
A combination of IR multiple-photon dissociation (IRMPD) action spectroscopy and quantum chemical calculations was employed to investigate the [M,C,2H]+(M = Fe and Co) species.
more »
« less
- Award ID(s):
- 2313553
- PAR ID:
- 10575127
- Publisher / Repository:
- Royal Society
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 26
- Issue:
- 13
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 9948 to 9962
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Multiple bonds between boron and transition metals are known in many borylene (:BR) complexes via metal dπ→BR back‐donation, despite the electron deficiency of boron. An electron‐precise metal–boron triple bond was first observed in BiB2O−[Bi≡B−B≡O]−in which both boron atoms can be viewed as sp‐hybridized and the [B−BO]−fragment is isoelectronic to a carbyne (CR). To search for the first electron‐precise transition‐metal‐boron triple‐bond species, we have produced IrB2O−and ReB2O−and investigated them by photoelectron spectroscopy and quantum‐chemical calculations. The results allow to elucidate the structures and bonding in the two clusters. We find IrB2O−has a closed‐shell bent structure (Cs,1A′) with BO−coordinated to an Ir≡B unit, (−OB)Ir≡B, whereas ReB2O−is linear (C∞v,3Σ−) with an electron‐precise Re≡B triple bond, [Re≡B−B≡O]−. The results suggest the intriguing possibility of synthesizing compounds with electron‐precise M≡B triple bonds analogous to classical carbyne systems.more » « less
-
Abstract Coordination complexes of general formulatrans‐[MX2(R2ECH2CH2ER2)2] (MII=Ti, V, Cr, Mn; E=N or P; R=alkyl or aryl) are a cornerstone of coordination and organometallic chemistry. We investigate the electronic properties of two such complexes,trans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2], which thus representtrans‐[MX2(R2ECH2CH2ER2)2] where M=V, X=Cl, R=Me and E=N (tmeda) and P (dmpe). These VIIcomplexes haveS=3/2 ground states, as expected for octahedral d3. Their tetragonal distortion leads to zero‐field splitting (zfs) that is modest in magnitude (D≈0.3 cm−1) relative to analogousS=1 TiIIand CrIIcomplexes. This parameter was determined from conventional EPR spectroscopy, but more effectively from high‐frequency and ‐field EPR (HFEPR) that determined the sign ofDas negative for the diamine complex, but positive for the diphosphine, which information had not been known for anytrans‐[VX2(R2ECH2CH2ER2)2] systems. The ligand‐field parameters oftrans‐[VCl2(tmeda)2] andtrans‐[VCl2(dmpe)2] are obtained using both classical theory andab initioquantum chemical theory. The results shed light not only on the electronic structure of VIIin this environment, but also on differences between N and P donor ligands, a key comparison in coordination chemistry.more » « less
-
In our experiment, a trace amount of an organic molecule (M = 1H-phenalen-1-one, 9-fluorenone, pyridine, or acridine) was seeded into a gas mix consisting of 3% O2 with a rare gas buffer (He or Ar) and then supersonically expanded. We excited the resulting molecular beam with ultraviolet light at either 355 nm (1H-phenalen-1-one, 9-fluorenone, or acridine) or 266 nm (pyridine) and used resonance enhanced multiphoton ionization (REMPI) spectroscopy to probe for formation of O2 in the a 1Δg state, 1O2. For all systems, the REMPI spectra demonstrates that ultraviolet excitation results in formation of 1O2 and the oxygen product is confirmed to be in the ground vibrational state and with an effective rotational temperature below 80 K. We then recorded the velocity map ion image of the 1O2 product. From the ion images we determined the center-of-mass translational energy distribution, P(ET), assuming photodissociation of a bimolecular M-O2 complex. We also report results from electronic structure calculations that allow for a determination of the M-O2 ground state binding energy. We use the complex binding energy, the energy to form 1O2, and the adiabatic triplet energy for each organic molecule to determine the available energy following photodissociation. For dissociation of a bimolecular complex, this available energy may be partitioned into either center-of-mass recoil or internal degrees of freedom of the organic moiety. We use the available energy to generate a Prior distribution, which predicts statistical energy partitioning during dissociation. For low available energies, less than 0.2 eV, we find the statistical prediction is in reasonable agreement with the experimental observations. However, at higher available energies the experimental distribution is biased to lower center-of-mass kinetic energies compared with the statistical prediction, which suggests the complex undergoes vibrational predissociation.more » « less
An official website of the United States government

