skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Perspective: intrinsic interactions of metal ions with biological molecules as studied by threshold collision-induced dissociation and infrared multiple photon dissociation
Threshold collision-induced dissociation (TCID) and infrared multiple photon dissociation (IRMPD) spectroscopy are used to examine complexes of metal mono- and dications with amino acids and peptides. Trends in the results are elucidated.  more » « less
Award ID(s):
2313553
PAR ID:
10575134
Author(s) / Creator(s):
Publisher / Repository:
Royal Society
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
26
Issue:
30
ISSN:
1463-9076
Page Range / eLocation ID:
20216 to 20240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dissociation of CO2on iron clusters was studied by using semilocal density functional theory and basis sets of triple‐zeta quality. Fe2, Fe4, and Fe16clusters were selected as the representative host clusters. When searching for isomers of FenCO2,n=2, 4 and 16 corresponding to carbon dioxide attachment to the host clusters, its reduction to O and CO, and to the complete dissociation, it was found that the total spin magnetic moments of the lowest energy states of the isomers are often quenched with respect to those of initial reagents Fen+CO2. Dissociation pathways of the Fe2+CO2, Fe4+CO2, and Fe16+CO2reactions contain several transition states separated by the local minima states; therefore, a natural question is where do the spin flips occur? Since lifetimes of magnetically excited states were shown to be of the order of 100 fs, the search for the CO2dissociation pathways was performed under the assumption that magnetic deexcitation may occur at the intermediate local minima. Two dissociation pathways were obtained for each Fen+CO2reaction using the gradient‐based methods. It was found that the Fe2+CO2reaction is endothermic with respect to both reduction and complete dissociation of CO2, whereas the Fe4+CO2and Fe16+CO2reactions are exothermic to both reduction and complete dissociation of carbon dioxide. The CO2reduction was found to be more favorable than its complete dissociation in the Fe4case. 
    more » « less
  2. Vibrational spectroscopy and dissociation dynamics of a prototypical cyclic hydroperoxide, cyclohexyl hydroperoxide has been studied using a combination of synthesis, spectroscopy, and theoretical methods. 
    more » « less
  3. We report modulation of exciton dissociation dynamics in quantum dots (QD) connected with photochromic molecules. Our results show that switching the configuration of photochromic molecules changes the inter-QD potential barrier height which has a major impact on the charge tunnelling and exciton dissociation. The switching of the dominant exciton decay pathway between the radiative recombination and exciton dissociation results in switchable photoluminescence intensity from QDs. Implications of our findings for optical memory and optical computing applications are discussed. 
    more » « less
  4. We applied reaction microscopy to elucidate fast non-adiabatic dissociation dynamics of deuterated water molecules after direct photo-double ionization at 61 eV with synchrotron radiation. For the very rare D+ + O+ + D breakup channel, the particle momenta, angular, and energy distributions of electrons and ions, measured in coincidence, reveal distinct electronic dication states and their dissociation pathways via spin–orbit coupling and charge transfer at crossings and seams on the potential energy surfaces. Notably, we could distinguish between direct and fast sequential dissociation scenarios. For the latter case, our measurements reveal the geometry and orientation of the deuterated water molecule with respect to the polarization vector that leads to this rare 3-body molecular breakup channel. Aided by multi-reference configuration-interaction calculations, the dissociation dynamics could be traced on the relevant potential energy surfaces and particularly their crossings and seams. This approach also unraveled the ultrafast time scales governing these processes. 
    more » « less
  5. We consider an ensemble of diatomic molecules resonantly coupled to an optical cavity under strong coupling conditions at normal incidence. Photodissociation dynamics is examined via direct numerical integration of the coupled Maxwell–Schrödinger equations with molecular rovibrational degrees of freedom explicitly taken into account. It is shown that the dissociation is significantly affected (slowed down) when the system is driven at its polaritonic frequencies. The observed effect is demonstrated to be of transient nature and has no classical analog. An intuitive explanation of the dissociation slowdown at polaritonic frequencies is proposed. 
    more » « less