Abstract Phosphorus (P) limits or co‐limits plant and microbial life in multiple ecosystems, including the arctic tundra. Although current global carbon (C) models focus on the coupling between soil nitrogen (N) and C, ecosystem P response to climate warming may also influence the global C cycle. Permafrost soils may see enhanced or reduced P availability under climate warming through multiple mechanisms including changing litter inputs through plant community change, changing plant–microbial dynamics, altered rates of mineralization of soil organic P through increased microbial activity, and newly exposed mineral‐bound P via deeper thaw. We investigated the effect of long‐term warming on plant leaf, multiple soil and microbial C, N, and P pools, and microbial extracellular enzyme activities, in Alaskan tundra plots underlain by permafrost. Here, we show that 25 yr of experimental summer warming increases community‐level plant leaf P through changing community composition to favour relatively P‐rich plant species. However, despite associated increases in P‐rich litter inputs, we found only a few responses in the belowground pools of P available for plant and microbial uptake, including a weak positive response for citric acid–extractable PO4in the surface soil, a decrease in microbial biomass P, and no change in soil P (or C or N) stocks. This weak, neutral, or negative belowground P response to warming despite enhanced litter P inputs is consistent with a growing number of studies in the arctic tundra that find no long‐term response of soil C and N stocks to warming.
more »
« less
Long-term fertilization increases soil but not plant or microbial N in a Chihuahuan Desert grassland
Abstract. Although the negative consequences of increased nitrogen (N) supply for plant communities and soil chemistry are well known, most studies have focused on mesic grasslands, and the fate of added N in arid and semi-arid ecosystems remains unclear. To study the impacts of long-term increased N deposition on ecosystem N pools, we sampled a 26-year-long fertilization (10 g N m−2 yr−1) experiment in the northern Chihuahuan Desert at the Sevilleta National Wildlife Refuge (SNWR) in New Mexico. To determine the fate of the added N, we measured multiple soil, microbial, and plant N pools in shallow soils at three time points across the 2020 growing season. We found small but significant increases with fertilization in soil-available NO3--N and NH4+-N, yet the soil microbial and plant communities do not appear to be taking advantage of the increased N availability, with no changes in biomass or N content in either community. However, there were increases in total soil N with fertilization, suggesting increases in microbial or plant N earlier in the experiment. Ultimately, the majority of the N added in this multi-decadal experiment was not found in the shallow soil or the microbial or plant community and is likely to have been lost from the ecosystem entirely.
more »
« less
- PAR ID:
- 10575144
- Publisher / Repository:
- EGU
- Date Published:
- Journal Name:
- Biogeosciences
- Volume:
- 21
- Issue:
- 11
- ISSN:
- 1726-4189
- Page Range / eLocation ID:
- 2655 to 2667
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature – herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local‐scale herbivory, and its interaction with nutrient enrichment and climate, within global‐scale models to better predict land–atmosphere interactions under future climate change.more » « less
-
Abstract Human activities have led to increased deposition of nitrogen (N) and phosphorus (P) into soils. Nutrient enrichment of soils is known to increase plant biomass and rates of microbial litter decomposition. However, interacting effects of hydrologic position and associated changes to soil moisture can constrain microbial activity and lead to unexpected nutrient feedbacks on microbial community structure–function relationships. Examining feedbacks of nutrient enrichment on decomposition rates is essential for predicting microbial contributions to carbon (C) cycling as atmospheric deposition of nutrients persists. This study explored how long‐term nutrient addition and contrasting litter chemical composition influenced soil bacterial community structure and function. We hypothesized that long‐term nutrient enrichment of low fertility soils alters bacterial community structure and leads to higher rates of litter decomposition especially for low C:N litter, but low‐nutrient and dry conditions limit microbial decomposition of high C:N ratio litter. We leveraged a long‐term fertilization experiment to test how nutrient enrichment and hydrologic manipulation (due to ditches) affected decomposition and soil bacterial community structure in a nutrient‐poor coastal plain wetland. We conducted a litter bag experiment and characterized litter‐associated and bulk soil microbiomes using 16S rRNA bacterial sequencing and quantified litter mass losses and soil physicochemical properties. Results revealed that distinct bacterial communities were involved in decomposing higher C:N ratio litter more quickly in fertilized compared to unfertilized soils especially under drier soil conditions, while decomposition rates of lower C:N ratio litter were similar between fertilized and unfertilized plots. Bacterial community structure in part explained litter decomposition rates, and long‐term fertilization and drier hydrologic status affected bacterial diversity and increased decomposition rates. However, community composition associated with high C:N litter was similar in wetter plots with available nitrate detected, regardless of fertilization treatment. This study provides insight into long‐term fertilization effects on soil bacterial diversity and composition, decomposition, and the increased potential for soil C loss as nutrient enrichment and hydrology interact to affect historically low‐nutrient ecosystems.more » « less
-
Nutrient augmentation is one major global change disturbance that could have cascading effects on local plant and microbial communities thus altering biogeochemical properties (Peñuelas et al. 2012). While many studies have investigated fertilization effects on community change and ecosystem processes, less work has been done in dryland ecosystems (Schimel 2010), where nutrient availability often comes as pulses correlated with rain events (Collins et al. 2008). We leveraged an ongoing fertilization experiment (NutNet) at the Sevilleta to answer the question: How does fertilization alter dryland biogeochemical processes, and how does this effect change seasonally? To explore this topic, we specifically measure three important soil hydrolase enzymes, N-acetyl- glycosaminidase (NAG), phosphatase (AP), and β- glucosidase (BG), microbial biomass, and soil nitrogen levels at 5 points along a seasonal gradient within the NutNet plots.more » « less
-
Campbell, Barbara J. (Ed.)ABSTRACT In nutrient-limited conditions, plants rely on rhizosphere microbial members to facilitate nutrient acquisition, and in return, plants provide carbon resources to these root-associated microorganisms. However, atmospheric nutrient deposition can affect plant-microbe relationships by changing soil bacterial composition and by reducing cooperation between microbial taxa and plants. To examine how long-term nutrient addition shapes rhizosphere community composition, we compared traits associated with bacterial (fast-growing copiotrophs, slow-growing oligotrophs) and plant (C 3 forb, C 4 grass) communities residing in a nutrient-poor wetland ecosystem. Results revealed that oligotrophic taxa dominated soil bacterial communities and that fertilization increased the presence of oligotrophs in bulk and rhizosphere communities. Additionally, bacterial species diversity was greatest in fertilized soils, particularly in bulk soils. Nutrient enrichment (fertilized versus unfertilized) and plant association (bulk versus rhizosphere) determined bacterial community composition; bacterial community structure associated with plant functional group (grass versus forb) was similar within treatments but differed between fertilization treatments. The core forb microbiome consisted of 602 unique taxa, and the core grass microbiome consisted of 372 unique taxa. Forb rhizospheres were enriched in potentially disease-suppressive bacterial taxa, and grass rhizospheres were enriched in bacterial taxa associated with complex carbon decomposition. Results from this study demonstrate that fertilization serves as a strong environmental filter on the soil microbiome, which leads to distinct rhizosphere communities and can shift plant effects on the rhizosphere microbiome. These taxonomic shifts within plant rhizospheres could have implications for plant health and ecosystem functions associated with carbon and nitrogen cycling. IMPORTANCE Over the last century, humans have substantially altered nitrogen and phosphorus cycling. Use of synthetic fertilizer and burning of fossil fuels and biomass have increased nitrogen and phosphorus deposition, which results in unintended fertilization of historically low-nutrient ecosystems. With increased nutrient availability, plant biodiversity is expected to decline, and the abundance of copiotrophic taxa is anticipated to increase in bacterial communities. Here, we address how bacterial communities associated with different plant functional types (forb, grass) shift due to long-term nutrient enrichment. Unlike other studies, results revealed an increase in bacterial diversity, particularly of oligotrophic bacteria in fertilized plots. We observed that nutrient addition strongly determines forb and grass rhizosphere composition, which could indicate different metabolic preferences in the bacterial communities. This study highlights how long-term fertilization of oligotroph-dominated wetlands could alter diversity and metabolism of rhizosphere bacterial communities in unexpected ways.more » « less
An official website of the United States government

