skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Pawpaws prevent predictability: A locally dominant tree alters understory beta‐diversity and community assembly
Abstract While dominant species are known to be important in ecosystem functioning and community assembly, biodiversity responses to the presence of dominant species can be highly variable. Dominant species can increase the importance of deterministic community assembly by competitively excluding species in a consistent way across local communities, resulting in low site‐to‐site variation in community composition (beta‐diversity) and nonrandom community structure. In contrast, dominant species could increase the importance of stochastic community assembly by reducing the total number of individuals in local communities (community size), resulting in high beta‐diversity and more random community structure. We tested these hypotheses in a large, temperate oak‐hickory forest plot containing a locally dominant tree species, pawpaw (Asimina triloba; Annonaceae), an understory tree species that occurs in dense, clonal patches in forests throughout the east‐central United States. We determined how the presence of pawpaw influences local species diversity, community size, and beta‐diversity by measuring the abundance of all vascular plant species in 1 × 1‐m plots both inside and outside pawpaw patches. To test whether the presence of pawpaw influences local assembly processes, we compared observed patterns of beta‐diversity inside and outside patches to a null model in which communities were assembled at random with respect to species identity. We found lower local species diversity, lower community size, and higher observed beta‐diversity inside pawpaw patches than outside pawpaw patches. Moreover, standardized effect sizes of beta‐diversity from the null model were lower inside pawpaw patches than outside pawpaw patches, indicating more random species composition inside pawpaw patches. Together these results suggest that pawpaw increases the importance of stochastic relative to deterministic community assembly at local scales, likely by decreasing overall numbers of individuals and increasing random local extinctions inside patches. Our findings provide insights into the ecological processes by which locally dominant tree species shape the assembly and diversity of understory plant communities at different spatial scales.  more » « less
Award ID(s):
2240431 1557094
PAR ID:
10575158
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Ecosphere
Volume:
16
Issue:
1
ISSN:
2150-8925
Subject(s) / Keyword(s):
Asimina triloba beta-diversity community assembly community size competition dominant species ecological drift forest herbs null model species interactions stochasticity temperate forest
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract AimWe examined tree beta diversity in four biogeographical regions with contrasting environmental conditions, latitude, and diversity. We tested: (a) the influence of the species pool on beta diversity; (b) the relative contribution of niche‐based and dispersal‐based assembly to beta diversity; and (c) differences in the importance of these two assembly mechanisms in regions with differing productivity and species richness. LocationLowland and montane tropical forests in the Madidi region (Bolivia), lowland temperate forests in the Ozarks (USA), and montane temperate forests in the Cantabrian Mountains (Spain). MethodsWe surveyed woody plants with a diameter ≥2.5 cm following a standardized protocol in 236 0.1‐ha forest plots in four different biogeographical regions. We estimated the species pool at each region and used it to recreate null communities determined entirely by the species pool. Observed patterns of beta diversity smaller or greater than the null‐expected patterns of beta diversity implies the presence of local assembly mechanisms beyond the influence of the species pool. We used variation‐partitioning analyses to compare the contribution of niche‐based and dispersal‐based assembly to patterns of observed beta diversity and their deviations from null models among the four regions. Results(a) Differences in species pools alone did not explain observed differences in beta diversity among biogeographic regions. (b) In 3/4 regions, the environment explained more of the variation in beta diversity than spatial variables. (c) Spatial variables explained more of the beta diversity in more diverse and more productive regions with more rare species (tropical and lower‐elevation regions) compared to less diverse and less productive regions (temperate and higher‐elevation regions). (d) Greater alpha or gamma diversity did not result in higher beta diversity or stronger correlations with the environment. ConclusionOverall, the observed differences in beta diversity are better explained by differences in community assembly mechanism than by biogeographical processes that shaped the species pool. 
    more » « less
  2. 1) Urbanization may lead to changes in local richness (alpha diversity) or in community composition (beta diversity), although the direction of change can be challenging to predict. For instance, introduced species may offset the loss of native specialist taxa, leading to no change in alpha diversity in urban areas, but decreased beta diversity (i.e., more homogenous community structure). Alternatively, because urban areas can have low connectivity and high environmental heterogeneity between sites, they may support distinct communities from one another over small geographic distances. 2) Wetlands and ponds provide critical ecosystem services and support diverse communities, making them important systems in which to understand consequences of urbanization. To determine how urban development shapes pond community structure, we surveyed 68 ponds around Madison, Wisconsin, USA, which were classified as urban, greenspace, or rural based on surrounding land use. We evaluated the influence of local abiotic factors, presence of nonnative fishes, and landscape characteristics on alpha diversity of aquatic plants, macroinvertebrates, and vertebrates. We also analyzed whether surrounding land cover was associated with changes in community composition and/or the presence of specific taxa. 3) We found a 23% decrease in mean richness (alpha diversity) from rural to urban pond sites, and a 15% decrease in richness from rural to urban greenspace pond sites. Among landscape factors, observed pond richness was negatively correlated with adjacent developed land and mowed lawns, as well as greater distances to other waterbodies. Among pond level factors, habitat complexity was associated with increased richness, while the presence of invasive fish was associated with decreased richness. 4) Beta diversity was relatively high for all ponds due to turnover in composition between sites. Urban ponds supported more introduced species, lacked a subset of native species found in rural ponds, and had slightly higher beta diversity than greenspace and rural ponds. 5) Synthesis and Applications: Integrating ponds into connected greenspaces comprised of native vegetation (rather than mowed grass), preventing nonnative fish introductions, and promoting habitat complexity may mitigate negative effects of urbanization on aquatic richness. The high beta diversity of distinct pond communities emphasizes their importance to biodiversity support in urban environments, despite being small in size and rarely incorporated into urban conservation planning. 
    more » « less
  3. 1) Urbanization may lead to changes in local richness (alpha diversity) or in community composition (beta diversity), although the direction of change can be challenging to predict. For instance, introduced species may offset the loss of native specialist taxa, leading to no change in alpha diversity in urban areas, but decreased beta diversity (i.e., more homogenous community structure). Alternatively, because urban areas can have low connectivity and high environmental heterogeneity between sites, they may support distinct communities from one another over small geographic distances. 2) Wetlands and ponds provide critical ecosystem services and support diverse communities, making them important systems in which to understand consequences of urbanization. To determine how urban development shapes pond community structure, we surveyed 68 ponds around Madison, Wisconsin, USA, which were classified as urban, greenspace, or rural based on surrounding land use. We evaluated the influence of local abiotic factors, presence of nonnative fishes, and landscape characteristics on alpha diversity of aquatic plants, macroinvertebrates, and vertebrates. We also analyzed whether surrounding land cover was associated with changes in community composition and/or the presence of specific taxa. 3) We found a 23% decrease in mean richness (alpha diversity) from rural to urban pond sites, and a 15% decrease in richness from rural to urban greenspace pond sites. Among landscape factors, observed pond richness was negatively correlated with adjacent developed land and mowed lawns, as well as greater distances to other waterbodies. Among pond level factors, habitat complexity was associated with increased richness, while the presence of invasive fish was associated with decreased richness. 4) Beta diversity was relatively high for all ponds due to turnover in composition between sites. Urban ponds supported more introduced species, lacked a subset of native species found in rural ponds, and had slightly higher beta diversity than greenspace and rural ponds. 5) Synthesis and Applications: Integrating ponds into connected greenspaces comprised of native vegetation (rather than mowed grass), preventing nonnative fish introductions, and promoting habitat complexity may mitigate negative effects of urbanization on aquatic richness. The high beta diversity of distinct pond communities emphasizes their importance to biodiversity support in urban environments, despite being small in size and rarely incorporated into urban conservation planning. 
    more » « less
  4. Abstract Anthropogenic environmental changes are known to affect the Earth's ecosystems. However, how these changes influence assembly trajectories of the impacted communities remains a largely open question.In this study, we investigated the effect of elevated nitrogen (N) deposition and increased precipitation on plant taxonomic and phylogenetic β‐diversity in a 9‐year field experiment in the temperate semi‐arid steppe of Inner Mongolia, China.We found that both N and water addition significantly increased taxonomic β‐diversity, whereas N, not water, addition significantly increased phylogenetic β‐diversity. After the differences in local species diversity were controlled using null models, the standard effect size of taxonomic β‐diversity still increased with both N and water addition, whereas water, not N, addition, significantly reduced the standard effect size of phylogenetic β‐diversity. The increased phylogenetic convergence observed in the water addition treatment was associated with colonizing species in each water addition plot being more closely related to species in other replicate plots of the same treatment. Species colonization in this treatment was found to be trait‐based, with leaf nitrogen concentration being the key functional trait.Synthesis.Our analyses demonstrate that anthropogenic environmental changes may affect the assembly trajectories of plant communities at both taxonomic and phylogenetic scales. Our results also suggest that while stochastic processes may cause communities to diverge in species composition, deterministic process could still drive communities to converge in phylogenetic community structure. 
    more » « less
  5. Lurgi, Miguel (Ed.)
    ABSTRACT Microbial communities can be structured by both deterministic and stochastic processes, but the relative importance of these processes remains unknown. The ambiguity partly arises from an inability to disentangle soil microbial processes from confounding factors, such as aboveground plant communities or anthropogenic disturbance. In this study, we characterized the relative contributions of determinism and stochasticity to assembly processes of soil bacterial communities across a large environmental gradient of undisturbed Antarctic soils. We hypothesized that harsh soils would impose a strong environmental selection on microbial communities, whereas communities in benign soils would be structured largely by dispersal. Contrary to our expectations, dispersal was the dominant assembly mechanism across the entire soil environmental gradient, including benign environments. The microbial community composition reflects slowly changing soil conditions and dispersal limitation of isolated sites. Thus, stochastic processes, as opposed to deterministic, are primary drivers of soil ecosystem assembly across space at our study site. This is especially surprising given the strong environmental constraints on soil microorganisms in one of the harshest environments on the planet, suggesting that dispersal could be a driving force in microbial community assembly in soils worldwide. IMPORTANCE Because of their diversity and ubiquity, microbes provide an excellent means to tease apart how natural communities are structured. In general, ecologists believe that stochastic assembly processes, like random drift and dispersal, should dominate in benign environments while deterministic processes, like environmental filtering, should be prevalent in harsh environments. To help resolve this debate, we analyzed microbial community composition in pristine Antarctic soils devoid of human influence or plant communities for eons. Our results demonstrate that dispersal limitation is a surprisingly potent force of community limitation throughout all soil conditions. Thus, dispersal appears to be a driving force of microbial community assembly, even in the harshest of conditions. 
    more » « less