skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatiotemporal pattern detection, generation, and computation with circuits
Abstract Implementations of neurons, delays, and synapse circuits are presented with simulations. These neural elements are used to create two small spiking neural networks, the Rate-Window and Order-Biased clusters, which are capable of detecting simple two-spike spatiotemporal patterns. A simple pattern detecting network (SPDN) is created by combining the Rate-Window and Order-Biased clusters, where clusters are small spiking neural networks, and its simple pattern detection ability is demonstrated in simulation. The SPDN is used to implement a complex pattern detecting network (CPDN) and its complex pattern detection ability is demonstrated in simulation. Methods for generating arbitrary spatiotemporal patterns are presented. The CPDN and spatiotemporal pattern generation methods are then used to implement a novel spatiotemporal computing paradigm based on detecting and responding to spatiotemporal symbols. A simulation of a spatiotemporal half adder is presented to demonstrate the computing paradigm.  more » « less
Award ID(s):
1751230
PAR ID:
10575662
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Neural Computing and Applications
Volume:
37
Issue:
16
ISSN:
0941-0643
Format(s):
Medium: X Size: p. 9621-9637
Size(s):
p. 9621-9637
Sponsoring Org:
National Science Foundation
More Like this
  1. Analog neuromorphic computing systems emulate the parallelism and connectivity of the human brain, promising greater expressivity and energy efficiency compared to those of digital systems. Though many devices have emerged as candidates for artificial neurons and artificial synapses, there have been few device candidates for artificial dendrites. In this work, we report on biocompatible graphene-based artificial dendrites (GrADs) that can implement dendritic processing. By using a dual side-gate configuration, current applied through a Nafion membrane can be used to control device conductance across a trilayer graphene channel, showing spatiotemporal responses of leaky recurrent, alpha, and Gaussian dendritic potentials. The devices can be variably connected to enable higher-order neuronal responses, and we show through data-driven spiking neural network simulations that spiking activity is reduced by ≤15% without accuracy loss while low-frequency operation is stabilized. This positions the GrADs as strong candidates for energy efficient bio-interfaced spiking neural networks. 
    more » « less
  2. Network features found in the brain may help implement more efficient and robust neural networks. Spiking neural networks (SNNs) process spikes in the spatiotemporal domain and can offer better energy efficiency than deep neural networks. However, most SNN implementations rely on simple point neurons that neglect the rich neuronal and dendritic dynamics. Herein, a bio‐inspired columnar learning network (CLN) structure that employs feedforward, lateral, and feedback connections to make robust classification with sparse data is proposed. CLN is inspired by the mammalian neocortex, comprising cortical columns each containing multiple minicolumns formed by interacting pyramidal neurons. A column continuously processes spatiotemporal signals from its sensor, while learning spatial and temporal correlations between features in different regions of an object along with the sensor's movement through sensorimotor interaction. CLN can be implemented using memristor crossbars with a local learning rule, spiking timing‐dependent plasticity (STDP), which can be natively obtained in second‐order memristors. CLN allows inputs from multiple sensors to be simultaneously processed by different columns, resulting in higher classification accuracy and better noise tolerance. Analysis of networks implemented on memristor crossbars shows that the system can operate at very low power and high throughput, with high accuracy and robustness to noise. 
    more » « less
  3. De Lellis, Pietro (Ed.)
    Many temporal networks exhibit multiple system states, such as weekday and weekend patterns in social contact networks. The detection of such distinct states in temporal network data has recently been studied as it helps reveal underlying dynamical processes. A commonly used method is network aggregation over a time window, which aggregates a subsequence of multiple network snapshots into one static network. This method, however, necessarily discards temporal dynamics within the time window. Here we propose a new method for detecting dynamic states in temporal networks using connection series (i.e., time series of connection status) between nodes. Our method consists of the construction of connection series tensors over nonoverlapping time windows, similarity measurement between these tensors, and community detection in the similarity network of those time windows. Experiments with empirical temporal network data demonstrated that our method outperformed the conventional approach using simple network aggregation in revealing interpretable system states. In addition, our method allows users to analyze hierarchical temporal structures and to uncover dynamic states at different spatial/temporal resolutions. 
    more » « less
  4. Neuromorphic computing systems promise high energy efficiency and low latency. In particular, when integrated with neuromorphic sensors, they can be used to produce intelligent systems for a broad range of applications. An event‐based camera is such a neuromorphic sensor, inspired by the sparse and asynchronous spike representation of the biological visual system. However, processing the event data requires either using expensive feature descriptors to transform spikes into frames, or using spiking neural networks (SNNs) that are expensive to train. In this work, a neural network architecture is proposed, reservoir nodes‐enabled neuromorphic vision sensing network (RN‐Net), based on dynamic temporal encoding by on‐sensor reservoirs and simple deep neural network (DNN) blocks. The reservoir nodes enable efficient temporal processing of asynchronous events by leveraging the native dynamics of the node devices, while the DNN blocks enable spatial feature processing. Combining these blocks in a hierarchical structure, the RN‐Net offers efficient processing for both local and global spatiotemporal features. RN‐Net executes dynamic vision tasks created by event‐based cameras at the highest accuracy reported to date at one order of magnitude smaller network size. The use of simple DNN and standard backpropagation‐based training rules further reduces implementation and training costs. 
    more » « less
  5. Abstract The ability to finely manipulate spatiotemporal patterns displayed in neuronal populations is critical for understanding and influencing brain functions, sleep cycles, and neurological pathologies. However, such control tasks are challenged not only by the immense scale but also by the lack of real-time state measurements of neurons in the population, which deteriorates the control performance. In this paper, we formulate the control of dynamic structures in an ensemble of neuron oscillators as a tracking problem and propose a principled control technique for designing optimal stimuli that produce desired spatiotemporal patterns in a network of interacting neurons without requiring feedback information. We further reveal an interesting presentation of information encoding and processing in a neuron ensemble in terms of its controllability property. The performance of the presented technique in creating complex spatiotemporal spiking patterns is demonstrated on neural populations described by mathematically ideal and biophysical models, including the Kuramoto and Hodgkin-Huxley models, as well as real-time experiments on Wein bridge oscillators. 
    more » « less