skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MRI acquisition and reconstruction cookbook: recipes for reproducibility, served with real-world flavour
Abstract MRI acquisition and reconstruction research has transformed into a computation-driven field. As methods become more sophisticated, compute-heavy, and data-hungry, efforts to reproduce them become more difficult. While the computational MRI research community has made great leaps toward reproducible computational science, there are few tailored guidelines or standards for users to follow. In this review article, we develop a cookbook to facilitate reproducible research for MRI acquisition and reconstruction. Like any good cookbook, we list several recipes, each providing a basic standard on how to make computational MRI research reproducible. And like cooking, we show example flavours where reproducibility may fail due to under-specification. We structure the article, so that the cookbook itself serves as an example of reproducible research by providing sequence and reconstruction definitions as well as data to reproduce the experimental results in the figures. We also propose a community-driven effort to compile an evolving list of best practices for making computational MRI research reproducible.  more » « less
Award ID(s):
2239687
PAR ID:
10575665
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Magnetic Resonance Materials in Physics, Biology and Medicine
Volume:
38
Issue:
3
ISSN:
1352-8661
Format(s):
Medium: X Size: p. 367-385
Size(s):
p. 367-385
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This manuscript shares the lessons learned from providing scientific computing support to over 600 researchers and discipline experts, helping them develop reproducible and scalable analytical workflows to process large amounts of heterogeneous data.When providing scientific computing support, focus is first placed on how to foster the collaborative aspects of multidisciplinary projects on the technological side by providing virtual spaces to communicate and share documents. Then insights on data management planning and how to implement a centralized data management workflow for data‐driven projects are provided.Developing reproducible workflows requires the development of code. We describe tools and practices that have been successful in fostering collaborative coding and scaling on remote servers, enabling teams to iterate more efficiently. We have found short training sessions combined with on‐demand specialized support to be the most impactful combination in helping scientists develop their technical skills.Here we share our experiences in enabling researchers to do science more collaboratively and more reproducibly beyond any specific project, with long‐lasting effects on the way researchers conduct science. We hope that other groups supporting team‐ and data‐driven science (in environmental science and beyond) will benefit from the lessons we have learned over the years through trial and error. 
    more » « less
  2. Abstract Contributory science—including citizen and community science—allows scientists to leverage participant‐generated data while providing an opportunity for engaging with local community members. Data yielded by participant‐generated biodiversity platforms allow professional scientists to answer ecological and evolutionary questions across both geographic and temporal scales, which is incredibly valuable for conservation efforts.The data reported to contributory biodiversity platforms, such as eBird and iNaturalist, can be driven by social and ecological variables, leading to biased data. Though empirical work has highlighted the biases in contributory data, little work has articulated how biases arise in contributory data and the societal consequences of these biases.We present a conceptual framework illustrating how social and ecological variables create bias in contributory science data. In this framework, we present four filters—participation,detectability,samplingandpreference—that ultimately shape the type and location of contributory biodiversity data. We leverage this framework to examine data from the largest contributory science platforms—eBird and iNaturalist—in St. Louis, Missouri, the United States, and discuss the potential consequences of biased data.Lastly, we conclude by providing several recommendations for researchers and institutions to move towards a more inclusive field. With these recommendations, we provide opportunities to ameliorate biases in contributory data and an opportunity to practice equitable biodiversity conservation. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  3. Abstract ChemMLis an open machine learning (ML) and informatics program suite that is designed to support and advance the data‐driven research paradigm that is currently emerging in the chemical and materials domain.ChemMLallows its users to perform various data science tasks and execute ML workflows that are adapted specifically for the chemical and materials context. Key features are automation, general‐purpose utility, versatility, and user‐friendliness in order to make the application of modern data science a viable and widely accessible proposition in the broader chemistry and materials community.ChemMLis also designed to facilitate methodological innovation, and it is one of the cornerstones of the software ecosystem for data‐driven in silico research. This article is categorized under:Software > Simulation MethodsComputer and Information Science > ChemoinformaticsStructure and Mechanism > Computational Materials ScienceSoftware > Molecular Modeling 
    more » « less
  4. Abstract. Climate field reconstruction (CFR) refers to the estimation of spatiotemporal climate fields (such as surface temperature) from a collection of pointwise paleoclimate proxy datasets. Such reconstructions can provide rich information on climate dynamics and provide an out-of-sample validation of climate models. However, most CFR workflows are complex and time-consuming, as they involve (i) preprocessing of the proxy records, climate model simulations, and instrumental observations; (ii) application of one or more statistical methods; and (iii) analysis and visualization of the reconstruction results. Historically, this process has lacked transparency and accessibility, limiting reproducibility and experimentation by non-specialists. This article presents an open-source and object-oriented Python package called cfr that aims to make CFR workflows easy to understand and conduct, saving climatologists from technical details and facilitating efficient and reproducible research. cfr provides user-friendly utilities for common CFR tasks such as proxy and climate data analysis and visualization, proxy system modeling, and modularized workflows for multiple reconstruction methods, enabling methodological intercomparisons within the same framework. The package is supported with extensive documentation of the application programming interface (API) and a growing number of tutorial notebooks illustrating its usage. As an example, we present two cfr-driven reconstruction experiments using the PAGES 2k temperature database applying the last millennium reanalysis (LMR) paleoclimate data assimilation (PDA) framework and the graphical expectation–maximization (GraphEM) algorithm, respectively. 
    more » « less
  5. Abstract Many have argued that datasets resulting from scientific research should be part of the scholarly record as first class research products. Data sharing mandates from funding agencies and scientific journal publishers along with calls from the scientific community to better support transparency and reproducibility of scientific research have increased demand for tools and support for publishing datasets. Hydrology domain‐specific data publication services have been developed alongside more general purpose and even commercial data repositories. Prominent among these are the Hydrologic Information System (HIS) and HydroShare repositories developed by the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI). More broadly, however, multiple organizations have been involved in the practice of data publication in the hydrology domain, each having different roles that have shaped data publication and reuse. Bibliographic and archival approaches to data publication have been advanced, but both have limitations with respect to hydrologic data. Specific recommendations for improving data publication infrastructure, support, and practices to move beyond existing limitations and enable more effective data publication in support of scientific research in the hydrology domain include: improving support for journal article‐based data access and data citation, considering the workflow for data publication, enhancing support for reproducible science, encouraging publication of curated reference data collections, advancing interoperability standards for sharing data and metadata among repositories, developing partnerships with university libraries offering data services, and developing more specific data management plans. While presented in the context of CUAHSI's data repositories and experience, these recommendations are broadly applicable to other domains. This article is categorized under:Science of Water > Methods 
    more » « less