skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: What is Your Discount Factor?
We study the problem of inferring the discount factor of an agent optimizing a discounted reward objective in a finite state Markov Decision Process (MDP). Discounted reward objectives are common in sequential optimization, reinforcement learning, and algorithmic game theory. The discount factor is an important parameter used in formulating the discounted reward. It captures the “time value” of the reward- i.e., how much reward at hand would equal a promised reward at a future time. Knowing an agent’s discount factor can provide valuable insights into their decision-making, and help predict their preferences in previously unseen environments. However, pinpointing the exact value of the discount factor used by the agent is a challenging problem. Ad-hoc guesses are often incorrect. This paper focuses on the problem of computing the range of possible discount factors for a rational agent given their policy. A naive solution to this problem can be quite expensive. A classic result by Smallwood shows that the interval [0, 1) of possible discount factor can be partitioned into finitely many sub-intervals, such that the optimal policy remains the same for each such sub-interval. Furthermore, optimal policies for neighboring sub-intervals differ for a single state. We show how Smallwood’s result can be exploited to search for discount factor intervals for which a given policy is optimal by reducing it to polynomial root isolation. We extend the result to situations where the policy is suboptimal, but with a value function that is close to optimal. We develop numerical approaches to solve the discount factor elicitation problem and demonstrate the effectiveness of our algorithms through some case studies.  more » « less
Award ID(s):
2146563
PAR ID:
10575681
Author(s) / Creator(s):
; ;
Editor(s):
Hillston, Jane; Soudjiani, Sadegh
Publisher / Repository:
Springer, Cham
Date Published:
Volume:
14996
ISBN:
978-3-031-68415-9
Page Range / eLocation ID:
322-336
Subject(s) / Keyword(s):
Discount factor Markov Decision Process Optimization
Format(s):
Medium: X
Location:
Calgary, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. In robust Markov decision processes (MDPs), the uncertainty in the transition kernel is addressed by finding a policy that optimizes the worst-case performance over an uncertainty set of MDPs. While much of the literature has focused on discounted MDPs, robust average-reward MDPs remain largely unexplored. In this paper, we focus on robust average-reward MDPs, where the goal is to find a policy that optimizes the worst-case average reward over an uncertainty set. We first take an approach that approximates average-reward MDPs using discounted MDPs. We prove that the robust discounted value function converges to the robust average-reward as the discount factor goes to 1, and moreover when it is large, any optimal policy of the robust discounted MDP is also an optimal policy of the robust average-reward. We further design a robust dynamic programming approach, and theoretically characterize its convergence to the optimum. Then, we investigate robust average-reward MDPs directly without using discounted MDPs as an intermediate step. We derive the robust Bellman equation for robust average-reward MDPs, prove that the optimal policy can be derived from its solution, and further design a robust relative value iteration algorithm that provably finds its solution, or equivalently, the optimal robust policy. 
    more » « less
  2. Robust Markov decision processes (MDPs) aim to find a policy that optimizes the worst-case performance over an uncertainty set of MDPs. Existing studies mostly have focused on the robust MDPs under the discounted reward criterion, leaving the ones under the average-reward criterion largely unexplored. In this paper, we develop the first comprehensive and systematic study of robust average-reward MDPs, where the goal is to optimize the long-term average performance under the worst case. Our contributions are four-folds: (1) we prove the uniform convergence of the robust discounted value function to the robust average-reward function as the discount factor γ goes to 1; (2) we derive the robust average-reward Bellman equation, characterize the structure of its solution set, and prove the equivalence between solving the robust Bellman equation and finding the optimal robust policy; (3) we design robust dynamic programming algorithms, and theoretically characterize their convergence to the optimal policy; and (4) we design two model-free algorithms unitizing the multi-level Monte-Carlo approach, and prove their asymptotic convergence 
    more » « less
  3. Dasgupta, Sanjoy; Mandt, Stephan; Li, Yingzhen (Ed.)
    Average reward reinforcement learning (RL) provides a suitable framework for capturing the objective (i.e. long-run average reward) for continuing tasks, where there is often no natural way to identify a discount factor. However, existing average reward RL algorithms with sample complexity guarantees are not feasible, as they take as input the (unknown) mixing time of the Markov decision process (MDP). In this paper, we make initial progress towards addressing this open problem. We design a feasible average-reward $$Q$$-learning framework that requires no knowledge of any problem parameter as input. Our framework is based on discounted $$Q$$-learning, while we dynamically adapt the discount factor (and hence the effective horizon) to progressively approximate the average reward. In the synchronous setting, we solve three tasks: (i) learn a policy that is $$\epsilon$$-close to optimal, (ii) estimate optimal average reward with $$\epsilon$$-accuracy, and (iii) estimate the bias function (similar to $$Q$$-function in discounted case) with $$\epsilon$$-accuracy. We show that with carefully designed adaptation schemes, (i) can be achieved with $$\tilde{O}(\frac{SA t_{\mathrm{mix}}^{8}}{\epsilon^{8}})$$ samples, (ii) with $$\tilde{O}(\frac{SA t_{\mathrm{mix}}^5}{\epsilon^5})$$ samples, and (iii) with $$\tilde{O}(\frac{SA B}{\epsilon^9})$$ samples, where $$t_\mathrm{mix}$$ is the mixing time, and $B > 0$ is an MDP-dependent constant. To our knowledge, we provide the first finite-sample guarantees that are polynomial in $$S, A, t_{\mathrm{mix}}, \epsilon$$ for a feasible variant of $$Q$$-learning. That said, the sample complexity bounds have tremendous room for improvement, which we leave for the community’s best minds. Preliminary simulations verify that our framework is effective without prior knowledge of parameters as input. 
    more » « less
  4. Dasgupta, Sanjoy; Mandt, Stephan; Li, Yingzhen (Ed.)
    Average reward reinforcement learning (RL) provides a suitable framework for capturing the objective (i.e. long-run average reward) for continuing tasks, where there is often no natural way to identify a discount factor. However, existing average reward RL algorithms with sample complexity guarantees are not feasible, as they take as input the (unknown) mixing time of the Markov decision process (MDP). In this paper, we make initial progress towards addressing this open problem. We design a feasible average-reward $$Q$$-learning framework that requires no knowledge of any problem parameter as input. Our framework is based on discounted $$Q$$-learning, while we dynamically adapt the discount factor (and hence the effective horizon) to progressively approximate the average reward. In the synchronous setting, we solve three tasks: (i) learn a policy that is $$\epsilon$$-close to optimal, (ii) estimate optimal average reward with $$\epsilon$$-accuracy, and (iii) estimate the bias function (similar to $$Q$$-function in discounted case) with $$\epsilon$$-accuracy. We show that with carefully designed adaptation schemes, (i) can be achieved with $$\tilde{O}(\frac{SA t_{\mathrm{mix}}^{8}}{\epsilon^{8}})$$ samples, (ii) with $$\tilde{O}(\frac{SA t_{\mathrm{mix}}^5}{\epsilon^5})$$ samples, and (iii) with $$\tilde{O}(\frac{SA B}{\epsilon^9})$$ samples, where $$t_\mathrm{mix}$$ is the mixing time, and $B > 0$ is an MDP-dependent constant. To our knowledge, we provide the first finite-sample guarantees that are polynomial in $$S, A, t_{\mathrm{mix}}, \epsilon$$ for a feasible variant of $$Q$$-learning. That said, the sample complexity bounds have tremendous room for improvement, which we leave for the community’s best minds. Preliminary simulations verify that our framework is effective without prior knowledge of parameters as input. 
    more » « less
  5. Dasgupta, Sanjoy; Mandt, Stephan; Li, Yingzhen (Ed.)
    Average reward reinforcement learning (RL) provides a suitable framework for capturing the objective (i.e. long-run average reward) for continuing tasks, where there is often no natural way to identify a discount factor. However, existing average reward RL algorithms with sample complexity guarantees are not feasible, as they take as input the (unknown) mixing time of the Markov decision process (MDP). In this paper, we make initial progress towards addressing this open problem. We design a feasible average-reward $$Q$$-learning framework that requires no knowledge of any problem parameter as input. Our framework is based on discounted $$Q$$-learning, while we dynamically adapt the discount factor (and hence the effective horizon) to progressively approximate the average reward. In the synchronous setting, we solve three tasks: (i) learn a policy that is $$\epsilon$$-close to optimal, (ii) estimate optimal average reward with $$\epsilon$$-accuracy, and (iii) estimate the bias function (similar to $$Q$$-function in discounted case) with $$\epsilon$$-accuracy. We show that with carefully designed adaptation schemes, (i) can be achieved with $$\tilde{O}(\frac{SA t_{\mathrm{mix}}^{8}}{\epsilon^{8}})$$ samples, (ii) with $$\tilde{O}(\frac{SA t_{\mathrm{mix}}^5}{\epsilon^5})$$ samples, and (iii) with $$\tilde{O}(\frac{SA B}{\epsilon^9})$$ samples, where $$t_\mathrm{mix}$$ is the mixing time, and $B > 0$ is an MDP-dependent constant. To our knowledge, we provide the first finite-sample guarantees that are polynomial in $$S, A, t_{\mathrm{mix}}, \epsilon$$ for a feasible variant of $$Q$$-learning. That said, the sample complexity bounds have tremendous room for improvement, which we leave for the community’s best minds. Preliminary simulations verify that our framework is effective without prior knowledge of parameters as input. 
    more » « less