skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Among‐population variation in telomere regulatory proteins and their potential role as hidden drivers of intraspecific variation in life history
Abstract Biologists aim to explain patterns of growth, reproduction and ageing that characterize life histories, yet we are just beginning to understand the proximate mechanisms that generate this diversity. Existing research in this area has focused on telomeres but has generally overlooked the telomere's most direct mediator, the shelterin protein complex. Shelterin proteins physically interact with the telomere to shape its shortening and repair. They also regulate metabolism and immune function, suggesting a potential role in life history variation in the wild. However, research on shelterin proteins is uncommon outside of biomolecular work.Intraspecific analyses can play an important role in resolving these unknowns because they reveal subtle variation in life history within and among populations. Here, we assessed ecogeographic variation in shelterin protein abundance across eight populations of tree swallow (Tachycineta bicolor) with previously documented variation in environmental and life history traits. Using the blood gene expression of four shelterin proteins in 12‐day‐old nestlings, we tested the hypothesis that shelterin protein gene expression varies latitudinally and in relation to both telomere length and life history.Shelterin protein gene expression differed among populations and tracked non‐linear variation in latitude: nestlings from mid‐latitudes expressed nearly double the shelterin mRNA on average than those at more northern and southern sites. However, telomere length was not significantly related to latitude.We next assessed whether telomere length and shelterin protein gene expression correlate with 12‐day‐old body mass and wing length, two proxies of nestling growth linked to future fecundity and survival. We found that body mass and wing length correlated more strongly (and significantly) with shelterin protein gene expression than with telomere length.These results highlight telomere regulatory shelterin proteins as potential mediators of life history variation among populations. Together with existing research linking shelterin proteins and life history variation within populations, these ecogeographic patterns underscore the need for continued integration of ecology, evolution and telomere biology, which together will advance understanding of the drivers of life history variation in nature.  more » « less
Award ID(s):
2128337 1942192 1656109
PAR ID:
10575930
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Animal Ecology
Volume:
94
Issue:
3
ISSN:
0021-8790
Format(s):
Medium: X Size: p. 303-315
Size(s):
p. 303-315
Sponsoring Org:
National Science Foundation
More Like this
  1. Biologists aim to explain patterns of growth, reproduction, and ageing that characterize life histories, yet we are just beginning to understand the proximate mechanisms that generate this diversity. Existing research in this area has focused on telomeres but has generally overlooked the telomere’s most direct mediator, the shelterin protein complex. Shelterin proteins physically interact with the telomere to shape its shortening and repair. They also regulate metabolism and immune function, suggesting a potential role in life history variation in the wild. However, research on shelterin proteins is uncommon outside of biomolecular work. Intraspecific analyses can play an important role in resolving these unknowns because they reveal subtle variation in life history within and among populations. Here, we assessed ecogeographic variation in shelterin protein abundance across eight populations of tree swallow (Tachycineta bicolor) with previously documented variation in environmental and life history traits. Using blood gene expression of four shelterin proteins in 12-day old nestlings, we tested the hypothesis that shelterin protein gene expression varies latitudinally and in relation to both telomere length and life history. Shelterin protein gene expression differed among populations and tracked non-linear variation in latitude: nestlings from mid-latitudes expressed nearly double the shelterin mRNA on average than those at more northern and southern sites. However, telomere length was not significantly related to latitude. We next assessed whether telomere length and shelterin protein gene expression correlate with 12-day old body mass and wing length, two proxies of nestling growth linked to future fecundity and survival. We found that body mass and wing length correlated more strongly (and significantly) with shelterin protein gene expression than with telomere length. These results highlight telomere regulatory shelterin proteins as potential mediators of life history variation among populations. Together with existing research linking shelterin proteins and life history variation within populations, these ecogeographic patterns underscore the need for continued integration of ecology, evolution, and telomere biology, which together will advance understanding of the drivers of life history variation in nature. 
    more » « less
  2. Abstract Telomeres are emerging as correlates of fitness‐related traits and may be important mediators of ecologically relevant variation in life history strategies. Growing evidence suggests that telomere dynamics can be more predictive of performance than length itself, but very little work considers how telomere regulatory mechanisms respond to environmental challenges or influence performance in nature. Here, we combine observational and experimental data sets from free‐living tree swallows (Tachycineta bicolor) to assess how performance is predicted by the telomere regulatory gene POT1, which encodes a shelterin protein that sterically blocks telomerase from repairing the telomere. First, we show that lower POT1 gene expression in the blood was associated with higher female quality, that is, earlier breeding and heavier body mass. We next challenged mothers with an immune stressor (lipopolysaccharide injection) that led to “sickness” in mothers and 24 h of food restriction in their offspring. While POT1 did not respond to maternal injection, females with lower constitutive POT1 gene expression were better able to maintain feeding rates following treatment. Maternal injection also generated a 1‐day stressor for chicks, which responded with lower POT1 gene expression and elongated telomeres. Other putatively stress‐responsive mechanisms (i.e., glucocorticoids, antioxidants) showed marginal responses in stress‐exposed chicks. Model comparisons indicated that POT1 mRNA abundance was a largely better predictor of performance than telomere dynamics, indicating that telomere regulators may be powerful modulators of variation in life history strategies. 
    more » « less
  3. Abstract The ability to cope with heat is likely to influence species success amidst climate change. However, heat coping mechanisms are poorly understood in wild endotherms, which are increasingly pushed to their thermoregulatory limits.We take an organismal approach to this problem, unveiling how behavioural and physiological responses may allow success in the face of sublethal heat. We experimentally elevated nest temperatures for 4 h to mimic a future climate scenario (+4.5°C) during a critical period of post‐natal development in tree swallows (Tachycineta bicolor).Heat‐exposed nestlings exhibited marked changes in behaviour, including movement to cooler microclimates in the nest. They panted more and weighed less than controls at the end of the four‐hour heat challenge, suggesting panting‐induced water loss. Physiologically, heat induced high levels of heat shock protein (HSP) gene expression in the blood, alongside widespread transcriptional differences related to antioxidant defences, inflammation and apoptosis.Critically, all nestlings survived the heat challenge, and those exposed to milder heat weremorelikely to recruit into the breeding population. Early life but sub‐lethal heat may therefore act as a selective event, with the potential to shape population trajectories.Within the population, individuals varied in their physiological response to heat, namely in HSP gene expression, which exhibited higher mean and higher variance in heat‐exposed nestlings than in controls. Heat‐induced HSP levels were unrelated to individual body mass, or among‐nest differences in brood size, temperature, and behavioural thermoregulation. Nest identity explained a significant amount of HSP variation, yet siblings in the same nest differed by an average of ~4‐fold and individuals in the population differed by as much as ~100‐fold in their HSP response. This massive variation extends previous laboratory work in model organisms showing that heat shock proteins may harbour cryptic phenotypic variation.These results shed light on oft‐ignored elements of thermotolerance in wild birds at a critical stage of post‐natal development. By highlighting the scope of heat‐induced HSP gene expression and coupling it with a suite of organismal traits, we provide a framework for future testing of the mechanisms that shape species success in the face of change. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  4. ABSTRACT Freshwater mussels (Bivalvia: Unionida) are among the most imperilled freshwater taxa. Yet, there is a lack of basic life history information for mussels, including data on their growth and longevity. These data help inform conservation efforts, as they can indicate whether species or populations may be vulnerable to decline and inform which species may be best adapted to certain habitats. We aimed to quantify growth and longevity in five mussel species from four river systems in the southeastern United States and test whether growth was related to stream flow. We also interpreted our findings in the context of life history theory.To model mussel growth and longevity, we cut radial thick sections from the shells of mussels and used high‐resolution photography to image the shells. We identified annual growth rings (annuli) and used von Bertalanffy growth models to estimate growth rate (K) and maximum age (Amax) across 13 mussel populations. We then used biochronological methods to remove age‐related variation in annual growth in each shell. We tested whether annual growth was correlated with stream flow using discharge‐based statistics.We found substantial variation inKandAmaxamong species and among populations of the same species.Kwas negatively related toAmax. We did not find consistent correlations between annual growth and stream flow.Our estimates ofKandAmaxalign with previous studies on closely related species and populations. They also match the eco‐evolutionary prediction that growth rate and longevity are negatively related. Life history theory predicts that short‐lived species with higher growth rates should be better adapted to environments with cyclical disturbance regimes, whereas longer‐lived species with low growth rates should be better adapted to stable environments. The lack of correlation between annual growth and stream flow suggests that mussel growth may be limited by other factors in our study system.While some species seem to have relatively narrow ranges for growth and longevity, other species show wide variation among populations. This highlights the need for species‐ and population‐specific conservation efforts. Fundamental life history information can be integrated with other species traits to predict how freshwater taxa may respond to ecological threats. 
    more » « less
  5. Abstract Variation in heat tolerance among populations can determine whether a species is able to cope with ongoing climate change. Such variation may be especially important for ectotherms whose body temperatures, and consequently, physiological processes, are regulated by external conditions.Additionally, differences in body size are often associated with latitudinal clines, thought to be driven by climate gradients. While studies have begun to explore variation in body size and heat tolerance within species, our understanding of these patterns across large spatial scales, particularly regarding the roles of plasticity and genetic differences, remains incomplete.Here, we examine body size, as measured by wing length, and thermal tolerance, as measured by the time to immobilisation at high temperatures (“thermal knockdown”), in populations of the mosquitoAedes sierrensiscollected from across a large latitudinal climate gradient spanning 1300 km (34–44° N).We find that mosquitoes collected from lower latitudes and warmer climates were more tolerant of high temperatures than those collected from higher latitudes and colder climates. Moreover, body size increased with latitude and decreased with temperature, a pattern consistent with James' rule, which appears to be a result of plasticity rather than genetic variation.Our results suggest that warmer environments produce smaller and more thermally tolerant populations. 
    more » « less