This dataset is associated with a manuscript on river plumes and idealized coastal corners with first author Michael M. Whitney. The dataset includes source code, compilation files, and routines to generate input files for the Regional Ocean Modeling System (ROMS) runs used in this study. ROMS output files in NetCDF format are generated by executing the compiled ROMS code with the input files. The dataset also includes MATLAB routines and datafiles for the analysis of model results and generation of figures in the manuscript. The following zip files are included: ROMS_v783_Yan_code.zip [ROMS source code branch used in this study] coastalcorner_ROMS_compilation.zip [files to compile ROMS source code and run-specific Fortran-90 built code] coastalcorner_ROMS_input_generate_MATLAB.zip [ROMS ASCII input file and MATLAB routines to generate ROMS NetCDF input files for runs] coastalcorner_MATLAB_output_analysis.zip [MATLAB data files with selected ROMS output fields and custom analysis routines and datafiles in MATLAB formats used in this study] coastalcorner_MATLAB_figures.zip [custom MATLAB routine for manuscript figure generation and MATLAB data files with all data fields included in figures] coastalcorner_tif_figures.zip [TIF image files of each figure in manuscript]
more »
« less
Supporting Data for Icelandic Riverine Freshwater Distribution, Offshore Export, and Alongshelf Connectivity
This dataset contains the supporting data for figures in “Icelandic Riverine Freshwater Distribution, Offshore Export, and Alongshelf Connectivity,” a manuscript for Estuarine, Coastal and Shelf Science by Michael M. Whitney (affiliated with the University of Connecticut). This study simulates Iceland’s shelf and open-ocean waters to investigate riverine freshwater distributions and transports. Tracers are applied to determine flushing times and quantify exports to the open ocean relative to downshelf transports. Results have broader relevance to Iceland’s coastal ecosystems and transports on other continental shelves. The dataset includes MATLAB data files that contain all the output data presented in the corresponding figures within the manuscript. Details about variables and units are described within the figure captions and manuscript text. Modified model code, settings, and input files are included for the Regional Ocean Model System (ROMS) application. The FORTRAN code files have the modifications for tracers that allow for decay in deep waters. The manuscript contains complete descriptions of methods, analysis, and interpretation. List of MATLAB data files: Figure01_data.mat Figure02_data.mat Figure03_data.mat Figure04_data.mat Figure05_data.mat Figure06_data.mat Figure07_data.mat Figure08_data.mat List of modified ROMS code files: def_info.F mod_scalars.F read_phypar.F step3d_t.F wrt_info.F ana_passive.h ana_psource.h List of ROMS settings and input files: iceland.h roms.in boundary2km_lonlatgrid.nc rivers2km_with_additional_rivers_lonlatgrid.nc grid_iceland2km_lonlatgrid.nc iceland2km_lonlatgrid_tideforcing_M2_NA_phase010119.nc initial2km_lonlatgrid_yearend_dyes.nc windforcing2km_lonlatgrid.nc
more »
« less
- Award ID(s):
- 2242070
- PAR ID:
- 10575959
- Publisher / Repository:
- Mendeley Data
- Date Published:
- Subject(s) / Keyword(s):
- Coastal Physical Oceanography Iceland
- Format(s):
- Medium: X
- Right(s):
- Creative Commons Attribution 4.0 International
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study models Iceland’s shelf and surrounding ocean waters to quantify shelf distributions, flushing times, offshore exports (beyond the 400-m isobath), and alongshelf transports of Iceland’s riverine freshwater. Analysis of the 2019 period divides the shelf into four quadrants and follows river waters delivered to each quadrant with tracked freshwater tracers that decay over time in open-ocean waters. Tracked freshwater thicknesses are large in the southwest quadrant and near major rivers in other areas. Freshwater is present around the entire shelf, but is less prevalent in the southeast quadrant. Many river waters can reach halfway around Iceland before being exported offshore; diminishing amounts can almost entirely circumnavigate Iceland. Annual average freshwater flushing times have an approximately seasonal scale at around 3 and 4 months for eastern and western river waters, respectively. Annual average freshwater exports are larger from northern shelf quadrants than southern ones. Average alongshelf freshwater transports are downshelf. Alongshelf connectivity is strong between most quadrants and moderate between the eastern quadrants. Regressions show how export and downshelf transport increase during upwelling-favorable and downwelling-favorable winds, respectively. Results indicate the Icelandic Coastal Current has robust buoyancy signatures and connected currents in western Iceland, and has generally weaker buoyancy and less-pronounced connected flows on the eastern side.more » « less
-
This dataset contains the supporting data for figures in “Separation of the Icelandic Coastal Current from the Reykjanes Peninsula,” a scientific article in Estuarine, Coastal and Shelf Science by Michael M. Whitney (affiliated with the University of Connecticut). The main objective of this study is describing and diagnosing Icelandic Coastal Current separation from the southwest tip of the Reykjanes Peninsula and the subsequent offshore excursion. Particular attention is paid to the interplay of coastal curvature, bathymetry, and winds. Motivated by satellite observations and prior research, realistic high-resolution (eddy-resolving) numerical simulations are conducted and analyzed. Sensitivity model runs for the study area are compared to isolate bathymetric and wind influences. Results have broader relevance to offshore transport and exchange on continental shelves. The dataset is composed of MATLAB data files, which are named FigureXX_data.mat. These files contain all data presented in the corresponding figures within the journal article. Details about variables and units are described within the figure captions and text of the article. The article contains complete descriptions of methods, analysis, and interpretation. List of MATLAB data files: Figure01_data.mat Figure02_data.mat Figure03_data.mat Figure04_data.mat Figure05_data.mat Figure06_data.mat Figure07_data.mat Figure08_data.mat Figure09_data.mat Figure10_data.mat Figure11_data.mat Figure12_data.matmore » « less
-
The raw data for the associated manuscript is organized here into three categories: 1) relating to the measurement and analysis of the native recluse spiders loop junctions, 2) raw images found in the figures throughout the manuscript, and 3) relating to the experiments testing the effect that junction angle has on the strength of two intersecting tapes. It is recommended to browse the data files in Tree mode, which will make the files appear in folders reflecting this organization. 1) Loxosceles Loop Junction Images and Analysis The folder titled, SEM Raw Images, has all of the scanning electron microscopy (SEM) images taken of the native recluse loop junctions. Some images are close-ups of individual junctions and others take a broader perspective (macro) of many loop junctions in series. Where possible several close-up images of the individual junctions are accompanied with a macro image. These images were imported into ImageJ where the junction angle was measured. The measurements for all 41 loop junctions observed are in the folder titled, Raw Data Files in the file titled, Loxosceles Loop Junction Angle Measurements.txt. The folder titled, Raw Data Files contains, in addition to the angle measurements, the raw data for analyzing the strength of individual loop junctions. The data is in native MATLAB data format. These datasets include the complete tensile data and the cross-sectional area data for each spiders silk. The MATLAB code titled, Figure_2A_2B_code, processes the raw tensile data from the natural recluse spiders loop junctions. This data is plotted as two representative curves in Figure 2A and as a complete set as a histogram in Figure 2B. The MATLAB code titled, Figure_7_code, processes and plots the loop junction data found in, Loxosceles Loop Junction Angle Measurements.txt and executed the model of a random set of recluse loops. This code can be executed to generate Figure 7. The folder titled, Raw Data Files, must be open in MATLAB to run this code! This code uses the MATLAB function, areacalculation, to calculate the junction area for a given junction angle. 2) Raw Images This folder is organized by the respective figure in the manuscript where each image can be found. Additional metadata for each image can be found accompanying each image. 3) Tensile Data and Analysis This folder contains all of the raw tensile data for all tape-tape junction experiments conducted. All of the tensile data is in the folder titled, Raw Data Test Files. Within this folder is a .txt file for each sample tested. The file names are critical to the figure codes working properly because they contain the information for the junction angle and iterations. The file names are in the format year-month-day_trialnumber_junctionangle.txt. Also in the Raw Data Test Files folder are two functions used within some of the figure codes: fbfill and areacalculation. These functions will be used in the figure codes to properly analyze the data. To generate any figure using the MATLAB code in this folder, first open the code in MATLAB. Then within MATLAB, open the folder Raw Data Test Files. Only with this folder open in MATLAB will the code be able to find the correct raw data .txt files. The rest of the contents of this folder are MATLAB codes for specific figures in the manuscript. The only exception to this is the code titled, surfaceenergy_code, which is executed to calculate the phenomenological surface energy for the tapes used in these experiments.more » « less
-
his directory contains model code, input, output, and scripts from a hosing (freshwater forcing in the North Atlantic) simulation with the OSU-UVic climate model (version 2.9.10) to investigate the effect of changes in the Atlantic Meridional Overturning Circulation (AMOC) on carbon and carbon-13 components in the ocean as described in Schmittner and Boling (2025) and Schmittner (2025). Model code is in the code/ subdirectory. Model input data is in the data/ subdirectory and in the control.in and mk.in files. Model output data is in the tavg*nc and tsi*nc files. Ferret scripts used to produce the figures are in the ferret/ subdirectory. Andreas Schmittner (andreas.schmittner@oregonstate.edu) References: Schmittner, A. and M. Boling (2025) Impact of Atlantic Meridional Overturning Circulation Collapse on Carbon Components in the Ocean, Global Biogeochemical Cycles, 39, e2025GB008526 doi: 10.1029/2025GB008526. Schmittner, A. (2025) Impact of Atlantic Meridional Overturning Circulation Collapse on Carbon-13 Components in the Ocean, Global Biogeochemical Cycles, 39, e2025GB008527 doi: 10.1029/2025GB008527.more » « less
An official website of the United States government
