Abstract Flow cytometry estimates of genome sizes among species of Drosophila show a 3-fold variation, ranging from ∼127 Mb in Drosophila mercatorum to ∼400 Mb in Drosophila cyrtoloma. However, the assembled portion of the Muller F element (orthologous to the fourth chromosome in Drosophila melanogaster) shows a nearly 14-fold variation in size, ranging from ∼1.3 Mb to >18 Mb. Here, we present chromosome-level long-read genome assemblies for 4 Drosophila species with expanded F elements ranging in size from 2.3 to 20.5 Mb. Each Muller element is present as a single scaffold in each assembly. These assemblies will enable new insights into the evolutionary causes and consequences of chromosome size expansion. 
                        more » 
                        « less   
                    This content will become publicly available on March 6, 2026
                            
                            Comparing small and large genomes within monogonont rotifers
                        
                    
    
            Abstract Genome size is an important correlate of many biological features including body size, metabolic rate, and developmental rate, and can vary due to a variety of mechanisms, including incorporation of repetitive elements, duplication events, or reduction due to selective constraints. Our ability to understand the causes of genome size variation are hampered by limited sampling of many non-model taxa, including monogonont rotifers. Here we used high throughput Nanopore sequencing and flow cytometry to estimate genome sizes of nine species of monogonont rotifers representing seven families, including three representatives of Superorder Gnesiotrocha. We annotated the genomes and classified the repetitive elements. We also compared genome size with two biological features: body size and metabolic rate. Body sizes were obtained from the literature and our estimates. Oxygen consumption was used as a proxy for metabolic rate and was determined using a respirometer. We obtained similar genome size estimates from genome assemblies and flow cytometry, which were positively correlated with body size and size-specific respiration rate. Importantly, we determined that genome size variation is not due to increased numbers of repetitive elements or large regions of duplication. Instead, we observed higher numbers of predicted proteins as genome size increased, but currently many have no known function. Our results substantially expand the taxonomic scope of available genomes for Rotifera and provide opportunities for addressing genetic mechanisms underlying evolutionary and ecological processes in the phylum. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2051704
- PAR ID:
- 10576017
- Editor(s):
- Tenaillon, Maud
- Publisher / Repository:
- Oxford Academic
- Date Published:
- Journal Name:
- Genome Biology and Evolution
- ISSN:
- 1759-6653
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Gossmann, Toni (Ed.)Abstract Spiders (Araneae) have a diverse spectrum of morphologies, behaviors, and physiologies. Attempts to understand the genomic-basis of this diversity are often hindered by their large, heterozygous, and AT-rich genomes with high repeat content resulting in highly fragmented, poor-quality assemblies. As a result, the key attributes of spider genomes, including gene family evolution, repeat content, and gene function, remain poorly understood. Here, we used Illumina and Dovetail Chicago technologies to sequence the genome of the long-jawed spider Tetragnatha kauaiensis, producing an assembly distributed along 3,925 scaffolds with an N50 of ∼2 Mb. Using comparative genomics tools, we explore genome evolution across available spider assemblies. Our findings suggest that the previously reported and vast genome size variation in spiders is linked to the different representation and number of transposable elements. Using statistical tools to uncover gene-family level evolution, we find expansions associated with the sensory perception of taste, immunity, and metabolism. In addition, we report strikingly different histories of chemosensory, venom, and silk gene families, with the first two evolving much earlier, affected by the ancestral whole genome duplication in Arachnopulmonata (∼450 Ma) and exhibiting higher numbers. Together, our findings reveal that spider genomes are highly variable and that genomic novelty may have been driven by the burst of an ancient whole genome duplication, followed by gene family and transposable element expansion.more » « less
- 
            null (Ed.)Millions of species are currently being sequenced and their genomes are being compared. Many of them have more complex genomes than model systems and raised novel challenges for genome alignment. Widely used local alignment strategies often produce limited or incongruous results when applied to genomes with dispersed repeats, long indels, and highly diverse sequences. Moreover, alignment using many-to-many or reciprocal best hit approaches conflicts with well-studied patterns between species with different rounds of whole-genome duplication or polyploidy levels. Here we introduce AnchorWave, which performs whole-genome duplication informed collinear anchor identification between genomes and performs base-pair resolution global alignments for collinear blocks using the wavefront algorithm and a 2-piece affine gap cost strategy. This strategy enables AnchorWave to precisely identify multi-kilobase indels generated by transposable element (TE) presence/absence variants (PAVs). When aligning two maize genomes, AnchorWave successfully recalled 87% of previously reported TE PAVs between two maize lines. By contrast, other genome alignment tools showed almost zero power for TE PAV recall. AnchorWave precisely aligns up to three times more of the genome than the closest competitive approach, when comparing diverse genomes. Moreover, AnchorWave recalls transcription factor binding sites (TFBSs) at a rate of 1.05-74.85 fold higher than other tools, while with significantly lower false positive alignments. AnchorWave shows obvious improvement when applied to genomes with dispersed repeats, active transposable elements, high sequence diversity and whole-genome duplication variation.more » « less
- 
            Mueller, Rachel (Ed.)Abstract Transposable elements (TEs) are repetitive DNA sequences which create mutations and generate genetic diversity across the tree of life. In amniote vertebrates, TEs have been mainly studied in mammals and birds, whose genomes generally display low TE diversity. Squamates (Order Squamata; including ∼11,000 extant species of lizards and snakes) show as much variation in TE abundance and activity as they do in species and phenotypes. Despite this high TE activity, squamate genomes are remarkably uniform in size. We hypothesize that novel, lineage-specific genome dynamics have evolved over the course of squamate evolution. To understand the interplay between TEs and host genomes, we analyzed the evolutionary history of the chicken repeat 1 (CR1) retrotransposon, a TE family found in most tetrapod genomes which is the dominant TE in most reptiles. We compared 113 squamate genomes to the genomes of turtles, crocodilians, and birds and used ancestral state reconstruction to identify shifts in the rate of CR1 copy number evolution across reptiles. We analyzed the repeat landscapes of CR1 in squamate genomes and determined that shifts in the rate of CR1 copy number evolution are associated with lineage-specific variation in CR1 activity. We then used phylogenetic reconstruction of CR1 subfamilies across amniotes to reveal both recent and ancient CR1 subclades across the squamate tree of life. The patterns of CR1 evolution in squamates contrast other amniotes, suggesting key differences in how TEs interact with different host genomes and at different points across evolutionary history.more » « less
- 
            Tanentzap, Andrew J (Ed.)A principal goal in ecology is to identify the determinants of species abundances in nature. Body size has emerged as a fundamental and repeatable predictor of abundance, with smaller organisms occurring in greater numbers than larger ones. A biogeographic component, known as Bergmann’s rule, describes the preponderance, across taxonomic groups, of larger-bodied organisms in colder areas. Although undeniably important, the extent to which body size is the key trait underlying these patterns is unclear. We explored these questions in diatoms, unicellular algae of global importance for their roles in carbon fixation and energy flow through marine food webs. Using a phylogenomic dataset from a single lineage with worldwide distribution, we found that body size (cell volume) was strongly correlated with genome size, which varied by 50-fold across species and was driven by differences in the amount of repetitive DNA. However, directional models identified temperature and genome size, not cell size, as having the greatest influence on maximum population growth rate. A global metabarcoding dataset further identified genome size as a strong predictor of species abundance in the ocean, but only in colder regions at high and low latitudes where diatoms with large genomes dominated, a pattern consistent with Bergmann’s rule. Although species abundances are shaped by myriad interacting abiotic and biotic factors, genome size alone was a remarkably strong predictor of abundance. Taken together, these results highlight the cascading cellular and ecological consequences of macroevolutionary changes in an emergent trait, genome size, one of the most fundamental and irreducible properties of an organism.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
