The coronavirus disease 2019 (COVID-19) pandemic challenged the workings of human society, but in doing so, it advanced our understanding of the ecology and evolution of infectious diseases. Fluctuating transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demonstrated the highly dynamic nature of human social behavior, often without government intervention. Evolution of SARS-CoV-2 in the first two years following spillover resulted primarily in increased transmissibility, while in the third year, the globally dominant virus variants had all evolved substantial immune evasion. The combination of viral evolution and the buildup of host immunity through vaccination and infection greatly decreased the realized virulence of SARS-CoV-2 due to the age dependence of disease severity. The COVID-19 pandemic was exacerbated by presymptomatic, asymptomatic, and highly heterogeneous transmission, as well as highly variable disease severity and the broad host range of SARS-CoV-2. Insights and tools developed during the COVID-19 pandemic could provide a stronger scientific basis for preventing, mitigating, and controlling future pandemics.
more »
« less
Pathogen evolution during vaccination campaigns
Following the initiation of the unprecedented global vaccination campaign against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), attention has now turned to the potential impact of this large-scale intervention on the evolution of the virus. In this Essay, we summarize what is currently known about pathogen evolution in the context of immune priming (including vaccination) from research on other pathogen species, with an eye towards the future evolution of SARS-CoV-2.
more »
« less
- Award ID(s):
- 1754692
- PAR ID:
- 10576051
- Publisher / Repository:
- plos
- Date Published:
- Journal Name:
- PLOS Biology
- Volume:
- 20
- Issue:
- 9
- ISSN:
- 1545-7885
- Page Range / eLocation ID:
- e3001804
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Low, Nicola (Ed.)Background While booster vaccinations clearly reduce the risk of severe Coronavirus Disease 2019 (COVID-19) and death, the impact of boosters on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections has not been fully characterized: Doing so requires understanding their impact on asymptomatic and mildly symptomatic infections that often go unreported but nevertheless play an important role in spreading SARS-CoV-2. We sought to estimate the impact of COVID-19 booster doses on SARS-CoV-2 infections in a vaccinated population of young adults during an Omicron BA.1-predominant period. Methods and findings We implemented a cohort study of young adults in a college environment (Cornell University’s Ithaca campus) from a period when Omicron BA.1 was the predominant SARS-CoV-2 variant on campus (December 5 to December 31, 2021). Participants included 15,800 university students who completed initial vaccination series with vaccines approved by the World Health Organization for emergency use, were enrolled in mandatory at-least-weekly surveillance polymerase chain reaction (PCR) testing, and had no positive SARS-CoV-2 PCR test within 90 days before the start of the study period. Robust multivariable Poisson regression with the main outcome of a positive SARS-CoV-2 PCR test was performed to compare those who completed their initial vaccination series and a booster dose to those without a booster dose. A total of 1,926 unique SARS-CoV-2 infections were identified in the study population. Controlling for sex, student group membership, date of completion of initial vaccination series, initial vaccine type, and temporal effect during the study period, our analysis estimates that receiving a booster dose further reduces the rate of having a PCR-detected SARS-CoV-2 infection relative to an initial vaccination series by 56% (95% confidence interval [42%, 67%], P < 0.001). While most individuals had recent booster administration before or during the study period (a limitation of our study), this result is robust to the assumed delay over which a booster dose becomes effective (varied from 1 day to 14 days). The mandatory active surveillance approach used in this study, under which 86% of the person-days in the study occurred, reduces the likelihood of outcome misclassification. Key limitations of our methodology are that we did not have an a priori protocol or statistical analysis plan because the analysis was initially done for institutional research purposes, and some analysis choices were made after observing the data. Conclusions We observed that boosters are effective, relative to completion of initial vaccination series, in further reducing the rate of SARS-CoV-2 infections in a college student population during a period when Omicron BA.1 was predominant; booster vaccinations for this age group may play an important role in reducing incidence of COVID-19.more » « less
-
Abstract Two-dose messenger RNA vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective in preventing symptomatic COVID-19 infection. However, the durability of protection is not known, nor is the effectiveness against emerging viral variants. Additionally, vaccine responses may differ based on prior SARS-CoV-2 exposure history. To investigate protection against SARS-CoV-2 variants we measured binding and neutralizing antibody responses following both vaccine doses. We document significant declines in antibody levels three months post-vaccination, and reduced neutralization of emerging variants, highlighting the need to identify correlates of clinical protection to inform the timing of and indications for booster vaccination.more » « less
-
The rapid emergence of immune-evading viral variants of SARS-CoV-2 calls into question the practicality of a vaccine-only public-health strategy for managing the ongoing COVID-19 pandemic. It has been suggested that widespread vaccination is necessary to prevent the emergence of future immune-evading mutants. Here, we examined that proposition using stochastic computational models of viral transmission and mutation. Specifically, we looked at the likelihood of emergence of immune escape variants requiring multiple mutations and the impact of vaccination on this process. Our results suggest that the transmission rate of intermediate SARS-CoV-2 mutants will impact the rate at which novel immune-evading variants appear. While vaccination can lower the rate at which new variants appear, other interventions that reduce transmission can also have the same effect. Crucially, relying solely on widespread and repeated vaccination (vaccinating the entire population multiple times a year) is not sufficient to prevent the emergence of novel immune-evading strains, if transmission rates remain high within the population. Thus, vaccines alone are incapable of slowing the pace of evolution of immune evasion, and vaccinal protection against severe and fatal outcomes for COVID-19 patients is therefore not assured.more » « less
-
Abstract Some reproductive-aged individuals remain unvaccinated against coronavirus disease 2019 (COVID-19) because of concerns about potential adverse effects on fertility. Using data from an internet-based preconception cohort study, we examined the associations of COVID-19 vaccination and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with fertility among couples trying to conceive spontaneously. We enrolled 2,126 self-identified female participants aged 21–45 year residing in the United States or Canada during December 2020–September 2021 and followed them through November 2021. Participants completed questionnaires every 8 weeks on sociodemographics, lifestyle, medical factors, and partner information. We fit proportional probabilities regression models to estimate associations between self-reported COVID-19 vaccination and SARS-CoV-2 infection in both partners with fecundability (i.e., the per-cycle probability of conception), adjusting for potential confounders. COVID-19 vaccination was not appreciably associated with fecundability in either partner (female fecundability ratio (FR) = 1.08, 95% confidence interval (CI): 0.95, 1.23; male FR = 0.95, 95% CI: 0.83, 1.10). Female SARS-CoV-2 infection was not strongly associated with fecundability (FR = 1.07, 95% CI: 0.87, 1.31). Male infection was associated with a transient reduction in fecundability (for infection within 60 days, FR = 0.82, 95% CI: 0.47, 1.45; for infection after 60 days, FR = 1.16, 95% CI: 0.92, 1.47). These findings indicate that male SARS-CoV-2 infection may be associated with a short-term decline in fertility and that COVID-19 vaccination does not impair fertility in either partner.more » « less
An official website of the United States government

