Abstract Mountain landscapes have dynamic climates that, together with tectonic processes, influence their topographic evolution. Spatial and temporal variations in rainfall are ubiquitous in these settings as orographic precipitation patterns evolve with climate change and topography. Despite important implications such changes have for river incision, their influence is understudied. Here, we investigate how changes in rainfall pattern should affect both the steady state form and transient evolution of river profiles at the catchment scale using the stream power model. We find that spatially varied rainfall patterns can complicate steady state relationships between mean rainfall, channel steepness and fluvial relief, depending on where rainfall is concentrated in catchments, and lead to unexpected transient behavior if they are neglected. Specifically, changes in rainfall pattern cause multi‐stage transient responses that differ from responses to uniform changes in rainfall. Disparate responses by rivers that experience different rainfall conditions, particularly trunk and tributary rivers, are also an important factor in understanding catchment‐wide responses to climate change. Accounting for such disparities in sampling strategies and topographic analyses may, therefore, be vital for detecting and quantifying climate's role in landscape evolution. Lastly, we show how explicitly accounting for rainfall patterns in channel steepness indices, and thus spatial variations in erosional efficiency, may advance understanding of landscape sensitivity to climate. These results have important implications for detecting transient responses to changes in rainfall pattern (and more broadly climate), interpretation of morphometrics in steady state and transient landscapes, and quantifying the sensitivity of landscapes and erosion rates to climate.
more »
« less
Multi‐Century Erosion and Landscape Evolution of Ephemeral Catchments in Response to Sub‐Daily Rainfall Distribution Changes
Abstract Changes in the properties of rainfall distributions at sub‐daily scales are key to assessing soil erosion rates under climate transition. However, such changes are difficult to detect and model, especially over landscape evolution timescales. In this contribution, we validate a new catchment‐scale landscape evolution model against event‐scale runoff and sediment records. Through multi‐century numerical experiments, we also show that changes in the sub‐daily rainfall distribution, like those observed under modern climate change, can increase soil erosion rates by 40% but cannot be accurately inferred from changes in the average event properties and total rainfall. We quantify erosion and topographic trajectories associated with plausible changes in the sub‐daily rainfall distribution, highlighting scenarios in which shifting tail properties impact landscape evolution, at times, contrary to expectations based on changes in total rainfall.
more »
« less
- PAR ID:
- 10576229
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 52
- Issue:
- 5
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Water‐limited ecosystems are highly sensitive to not only precipitation amount, but also precipitation pattern, particularly variability in the size and timing of growing season rainfall events. Both rainfall event size and timing are expected to be altered by climate change, but the relative responses of dryland ecosystems to changes in rainfall event size versus timing have not been resolved. Here, we disentangle the effects of these different aspects of precipitation pattern on ecosystem dynamics.We experimentally assessed how these two aspects of rainfall variability impacted a semi‐arid grassland ecosystem by altering an ambient precipitation pattern to eliminate variability in (a) rainfall event size (all events were made the same size), (b) rainfall event timing (all events were uniformly spaced in time) and (c) both. Total precipitation amount was constant for all treatments. We measured responses of soil moisture, ecosystem carbon flux (e.g. net primary production and soil CO2flux), plant community composition and physiological responses of the dominant C4grass,Bouteloua gracilis.Removing variability in rainfall event size altered ecosystem dynamics more than a pattern of uniform event timing, but the largest impact occurred when variability in both were removed. Notably, eliminating variability in both event size and timing increased above‐ground net primary productivity by 23%, consistent with reduced water stress in the dominant C4grass, while also reducing seasonal variability in soil CO2flux by 35%, reflecting lower seasonal variability in soil moisture.Synthesis. Unique responses to different aspects of precipitation variability highlight the complexity of predicting how dryland ecosystems will be affected by climate change‐induced shifts in rainfall patterns. Our results provide novel support for the key roles of rainfall event size and timing, in addition to total precipitation amount, as determinants of ecosystem function.more » « less
-
Abstract Terrestrial cosmogenic nuclides (TCN) are widely employed to infer denudation rates in mountainous landscapes. The calculation of an inferred denudation rate (Dinf) from TCN concentrations is typically performed under the assumptions that denudation rates were steady during TCN accumulation and that soil chemical weathering negligibly impacted soil mineral abundances. In many landscapes, however, denudation rates were not steady and soil composition was significantly impacted by chemical weathering, which complicates interpretation of TCN concentrations. We present a landscape evolution model that computes transient changes in topography, soil thickness, soil mineralogy, and soil TCN concentrations. We used this model to investigate TCN responses in transient landscapes by imposing idealized perturbations in tectonically (rock uplift rate) and climatically sensitive parameters (soil production efficiency, hillslope transport efficiency, and mineral dissolution rate) on initially steady‐state landscapes. These experiments revealed key insights about TCN responses in transient landscapes. (a) Accounting for soil chemical erosion is necessary to accurately calculateDinf. (b) Responses ofDinfto tectonic perturbations differ from those to climatic perturbations, suggesting that spatial and temporal patterns inDinfare signatures of perturbation type and magnitude. (c) If soil chemical erosion is accounted for, basin‐averagedDinfinferred from TCN in stream sediment closely tracks actual basin‐averaged denudation rate, showing thatDinfis a reasonable proxy for actual denudation rate, even in many transient landscapes. (d) Response times ofDinfto perturbations increase with hillslope length, implying that response times should be sensitive to the climatic, biological, and lithologic processes that control hillslope length.more » « less
-
Abstract Erosional perturbations from changes in climate or tectonics are recorded in the profiles of bedrock rivers, but these signals can be challenging to unravel in settings with non‐uniform lithology. In layered rocks, the surface lithology at a given location varies through time as erosion exposes different layers of rock. Recent modeling studies have used the Stream Power Model (SPM) to highlight complex variations in erosion rates that arise in bedrock rivers incising through layered rocks. However, these studies do not capture the effects of coarse sediment cover on channel evolution. We use the “Stream Power with Alluvium Conservation and Entrainment” (SPACE) model to explore how sediment cover influences landscape evolution and modulates the topographic expression of erodibility contrasts in horizontally layered rocks. We simulate river evolution through alternating layers of hard and soft rock over million‐year timescales with a constant and uniform uplift rate. Compared to the SPM, model runs with sediment cover have systematically higher channel steepness values in soft rock layers and lower channel steepness values in hard rock layers. As more sediment accumulates, the contrast in steepness between the two rock types decreases. Effective bedrock erodibilities back‐calculated assuming the SPM are strongly influenced by sediment cover. We also find that sediment cover can significantly increase total relief and timescales of adjustment toward landscape‐averaged steady‐state topography and erosion rates.more » « less
-
Mountains are key features of the Earth’s surface and host a substantial proportion of the world’s species. However, the links between the evolution and distribution of biodiversity and the formation of mountains remain poorly understood. Here, we integrate multiple datasets to assess the relationships between species richness in mountains, geology and climate at global and regional scales. Specifically, we analyse how erosion, relief, soil and climate relate to the geographical distribution of ter- restrial tetrapods, which include amphibians, birds and mammals. We find that centres of species richness correlate with areas of high temperatures, annual rainfall and topographic relief, supporting previous studies. We unveil additional links between mountain-building processes and biodiversity: species richness correlates with erosion rates and heterogeneity of soil types, with a varying response across continents. These additional links are prominent but under-explored, and probably relate to the interplay between surface uplift, climate change and atmospheric circulation through time. They are also influenced by the location and orientation of mountain ranges in relation to air circulation patterns, and how species diversification, dispersal and refugia respond to climate change. A better understanding of biosphere–lithosphere interactions is needed to understand the patterns and evolution of mountain biodiversity across space and time.more » « less
An official website of the United States government
