skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Very Large and Long-lasting Anisotropies Caused by Sunward Streaming Energetic Ions: Solar Orbiter and STEREO A Observations
Abstract The anisotropy of energetic particles provides essential information to help resolve the underlying fundamental physics of their spatial distributions, injection, acceleration, and transport processes. In this work, we report an energetic ion enhancement that is characterized by very large and long-lasting anisotropies observed by STEREO A and Solar Orbiter, which are nearly aligned along the same nominal Parker spiral. This ion enhancement appears at the rising phase of a widespread solar energetic particle event that was associated with the farside coronal mass ejection on 2022 February 15. According to our analysis, the long-lasting anisotropy resulted from the continuous injection of energetic ions from a well-connected particle source located beyond the STEREO A’s orbit. Solar Orbiter also observed an interval of very large anisotropy dominated exclusively by sunward streaming ions but with the additional implication that it detected the very early phase of ion injections onto magnetic field lines that newly connected to the particle source, which is likely the first reported event of this kind. These results further illustrate how energetic particle anisotropy information, in particular from multiple observer locations, can be used to disentangle the sources and transport processes of energetic ions, even when their heliospheric context is not simple.  more » « less
Award ID(s):
2301382 2147399
PAR ID:
10576253
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
973
Issue:
2
ISSN:
2041-8205
Page Range / eLocation ID:
L52
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A series of solar energetic electron (SEE) events was observed from 2022 November 9 to November 15 by Solar Orbiter, STEREO-A, and near-Earth spacecraft. At least 32 SEE intensity enhancements at energies >10 keV were clearly distinguishable in Solar Orbiter particle data, with 13 of them occurring on November 11. Several of these events were accompanied by ≲10 MeV proton and ≲2 MeV nucleon−1heavy-ion intensity enhancements. By combining remote-sensing and in situ data from the three viewpoints (Solar Orbiter and STEREO-A were ∼20° and ∼15° east of Earth, respectively), we determine that the origin of this rapid succession of events was a series of brightenings and jetlike eruptions detected in extreme ultraviolet (EUV) observations from the vicinity of two active regions. We find a close association between these EUV phenomena, the occurrence of hard X-ray flares, type III radio bursts, and the release of SEEs. For the most intense events, usually associated with extended EUV jets, the distance between the site of these solar eruptions and the estimated magnetic connectivity regions of each spacecraft with the Sun did not prevent the arrival of electrons at the three locations. The capability of jets to drive coronal fronts does not necessarily imply the observation of an SEE event. Two peculiar SEE events on November 9 and 14, observed only at electron energies ≲50 keV but rich in ≲1 MeV nucleon−1heavy ions, originated from slow-rising confined EUV emissions, for which the process resulting in energetic particle release to interplanetary space is unclear. 
    more » « less
  2. Context.On 13 March 2023, when the Parker Solar Probe spacecraft (S/C) was situated on the far side of the Sun as seen from Earth, a large solar eruption took place, which created a strong solar energetic particle (SEP) event observed by multiple S/C all around the Sun. The energetic event was observed at six well-separated locations in the heliosphere, provided by the Parker Solar Probe, Solar Orbiter, BepiColombo, STEREO A, near-Earth S/C, and MAVEN at Mars. Clear signatures of an in situ shock crossing and a related energetic storm particle (ESP) event were observed at all inner-heliospheric S/C, suggesting that the interplanetary coronal mass ejection (CME)-driven shock extended all around the Sun. However, the solar event was accompanied by a series of pre-event CMEs. Aims.We aim to characterize this extreme widespread SEP event and to provide an explanation for the unusual observation of a circumsolar interplanetary shock and a corresponding circumsolar ESP event. Methods.We analyzed data from seven space missions, namely Parker Solar Probe, Solar Orbiter, BepiColombo, STEREO A, SOHO, Wind, and MAVEN, to characterize the solar eruption at the Sun, the energetic particle event, and the interplanetary context at each observer location as well as the magnetic connectivity of each observer to the Sun. We then employed magnetohydrodynamic simulations of the solar wind in which we injected various CMEs that were launched before as well as contemporaneously with the solar eruption under study. In particular, we tested two different scenarios that could have produced the observed global ESP event: (1) a single circumsolar blast-wave-like shock launched by the associated solar eruption, and (2) the combination of multiple CMEs driving shocks into different directions. Results.By comparing the simulations of the two scenarios with observations, we find that both settings are able to explain the observations. However, the blast-wave scenario performs slightly better in terms of the predicted shock arrival times at the various observers. Conclusions.Our work demonstrates that a circumsolar ESP event, driven by a single solar eruption into the inner heliosphere, is a realistic scenario. 
    more » « less
  3. Abstract On 2022 February 15–16, multiple spacecraft measured one of the most intense solar energetic particle (SEP) events observed so far in Solar Cycle 25. This study provides an overview of interesting observations made by multiple spacecraft during this event. Parker Solar Probe (PSP) and BepiColombo were close to each other at 0.34–0.37 au (a radial separation of ∼0.03 au) as they were impacted by the flank of the associated coronal mass ejection (CME). At about 100° in the retrograde direction and 1.5 au away from the Sun, the radiation detector on board the Curiosity surface rover observed the largest ground-level enhancement on Mars since surface measurements began. At intermediate distances (0.7–1.0 au), the presence of stream interaction regions (SIRs) during the SEP arrival time provides additional complexities regarding the analysis of the distinct contributions of CME-driven versus SIR-driven events in observations by spacecraft such as Solar Orbiter and STEREO-A, and by near-Earth spacecraft like ACE, SOHO, and WIND. The proximity of PSP and BepiColombo also enables us to directly compare their measurements and perform cross-calibration for the energetic particle instruments on board the two spacecraft. Our analysis indicates that energetic proton measurements from BepiColombo and PSP are in reasonable agreement with each other to within a factor of ∼1.35. Finally, this study introduces the various ongoing efforts that will collectively improve our understanding of this impactful, widespread SEP event. 
    more » « less
  4. Abstract We report on the 2024 September 9 sustained gamma-ray emission (SGRE) event observed by the Large Area Telescope (LAT) on board the Fermi satellite. The hevent was associated with a backside solar eruption observed by multiple spacecraft such as the Solar and Heliospheric Observatory (SOHO), Solar Terrestrial Relations Observatory (STEREO), Parker Solar Probe (PSP), Solar Orbiter (SolO), Solar Dynamics Observatory (SDO), Wind, and GOES, and by ground-based radio telescopes. Fermi/LAT observed the SGRE after the EUV wave from the backside eruption crossed the limb to the frontside of the Sun. SolO’s Spectrometer Telescope for Imaging X-rays (STIX) imaged an intense (X3.3) flare, which occurred ≈ 41° behind the east limb, from heliographic coordinates S13E131. Forward modeling of the coronal mass ejection (CME) flux rope revealed that it impulsively accelerated (3.54 km s−2) to attain a peak speed of 2162 km s−1. SolO’s energetic particle detectors (EPD) observed protons up to ≈ 1 GeV from the extended shock and electrons that produced a complex type II burst and possibly type III bursts. The durations of SGRE and type II burst are consistent with the linear relation between these quantities obtained from longer duration (> 3 hours) SGRE events. All these observations are consistent with an extended shock surrounding the CME flux rope, which is the likely source of high-energy protons required for the SGRE event. We compare this event with six other behind-the-limb (BTL) SGRE eruptions and find that they are all consistent with energetic shock-driving CMEs. We also find a significant east-west asymmetry (3:1) in the BTL source locations. 
    more » « less
  5. Abstract In this paper we examine a low-energy solar energetic particle (SEP) event observed by IS⊙IS’s Energetic Particle Instrument-Low (EPI-Lo) inside 0.18 au on 2020 September 30. This small SEP event has a very interesting time profile and ion composition. Our results show that the maximum energy and peak in intensity are observed mainly along the open radial magnetic field. The event shows velocity dispersion, and strong particle anisotropies are observed throughout the event, showing that more particles are streaming outward from the Sun. We do not see a shock in the in situ plasma or magnetic field data throughout the event. Heavy ions, such as O and Fe, were detected in addition to protons and 4He, but without significant enhancements in 3He or energetic electrons. Our analysis shows that this event is associated with a slow streamer blowout coronal mass ejection (SBO-CME), and the signatures of this small CME event are consistent with those typical of larger CME events. The time–intensity profile of this event shows that the Parker Solar Probe encountered the western flank of the SBO-CME. The anisotropic and dispersive nature of this event in a shockless local plasma gives indications that these particles are most likely accelerated remotely near the Sun by a weak shock or compression wave ahead of the SBO-CME. This event may represent direct observations of the source of the low-energy SEP seed particle population. 
    more » « less