Abstract The goal of this study is to develop a new computed tomography (CT) image reconstruction method, aiming at improving the quality of the reconstructed images of existing methods while reducing computational costs. Existing CT reconstruction is modeled by pixel-based piecewise constant approximations of the integral equation that describes the CT projection data acquisition process. Using these approximations imposes a bottleneck model error and results in a discrete system of a large size. We propose to develop a content-adaptive unstructured grid (CAUG) based regularized CT reconstruction method to address these issues. Specifically, we design a CAUG of the image domain to sparsely represent the underlying image, and introduce a CAUG-based piecewise linear approximation of the integral equation by employing a collocation method. We further apply a regularization defined on the CAUG for the resulting ill-posed linear system, which may lead to a sparse linear representation for the underlying solution. The regularized CT reconstruction is formulated as a convex optimization problem, whose objective function consists of a weighted least square norm based fidelity term, a regularization term and a constraint term. Here, the corresponding weighted matrix is derived from the simultaneous algebraic reconstruction technique (SART). We then develop a SART-type preconditioned fixed-point proximity algorithm to solve the optimization problem. Convergence analysis is provided for the resulting iterative algorithm. Numerical experiments demonstrate the superiority of the proposed method over several existing methods in terms of both suppressing noise and reducing computational costs. These methods include the SART without regularization and with the quadratic regularization, the traditional total variation (TV) regularized reconstruction method and the TV superiorized conjugate gradient method on the pixel grid.
more »
« less
This content will become publicly available on December 2, 2025
A nonlocal prior in iterative CT reconstruction
Abstract BackgroundComputed tomography (CT) reconstruction problems are always framed as inverse problems, where the attenuation map of an imaged object is reconstructed from the sinogram measurement. In practice, these inverse problems are often ill‐posed, especially under few‐view and limited‐angle conditions, which makes accurate reconstruction challenging. Existing solutions use regularizations such as total variation to steer reconstruction algorithms to the most plausible result. However, most prevalent regularizations rely on the same priors, such as piecewise constant prior, hindering their ability to collaborate effectively and further boost reconstruction precision. PurposeThis study aims to overcome the aforementioned challenge a prior previously limited to discrete tomography. This enables more accurate reconstructions when the proposed method is used in conjunction with most existing regularizations as they utilize different priors. The improvements will be demonstrated through experiments conducted under various conditions. MethodsInspired by the discrete algebraic reconstruction technique (DART) algorithm for discrete tomography, we find out that pixel grayscale values in CT images are not uniformly distributed and are actually highly clustered. Such discovery can be utilized as a powerful prior for CT reconstruction. In this paper, we leverage the collaborative filtering technique to enable the collaboration of the proposed prior and most existing regularizations, significantly enhancing the reconstruction accuracy. ResultsOur experiments show that the proposed method can work with most existing regularizations and significantly improve the reconstruction quality. Such improvement is most pronounced under limited‐angle and few‐view conditions. Furthermore, the proposed regularization also has the potential for further improvement and can be utilized in other image reconstruction areas. ConclusionsWe propose improving the performance of iterative CT reconstruction algorithms by applying the collaborative filtering technique along with a prior based on the densely clustered distribution of pixel grayscale values in CT images. Our experimental results indicate that the proposed methodology consistently enhances reconstruction accuracy when used in conjunction with most existing regularizations, particularly under few‐view and limited‐angle conditions.
more »
« less
- Award ID(s):
- 2210866
- PAR ID:
- 10576546
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Medical Physics
- Volume:
- 52
- Issue:
- 3
- ISSN:
- 0094-2405
- Format(s):
- Medium: X Size: p. 1436-1453
- Size(s):
- p. 1436-1453
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Coded spectral X-ray computed tomography (CT) based on K-edge filtered illumination is a cost-effective approach to acquire both 3-dimensional structure of objects and their material composition. This approach allows sets of incomplete rays from sparse views or sparse rays with both spatial and spectral encoding to effectively reduce the inspection duration or radiation dose, which is of significance in biological imaging and medical diagnostics. However, reconstruction of spectral CT images from compressed measurements is a nonlinear and ill-posed problem. This paper proposes a material-decomposition-based approach to directly solve the reconstruction problem, without estimating the energy-binned sinograms. This approach assumes that the linear attenuation coefficient map of objects can be decomposed into a few basis materials that are separable in the spectral and space domains. The nonlinear problem is then converted to the reconstruction of the mass density maps of the basis materials. The dimensionality of the optimization variables is thus effectively reduced to overcome the ill-posedness. An alternating minimization scheme is used to solve the reconstruction with regularizations of weighted nuclear norm and total variation. Compared to the state-of-the-art reconstruction method for coded spectral CT, the proposed method can significantly improve the reconstruction quality. It is also capable of reconstructing the spectral CT images at two additional energy bins from the same set of measurements, thus providing more spectral information of the object.more » « less
-
Abstract PurposeForward and backprojections are the basis of all model‐based iterative reconstruction (MBIR) methods. However, computing these accurately is time‐consuming. In this paper, we present a method for MBIR in parallel X‐ray beam geometry that utilizes a Gram filter to efficiently implement forward and backprojection. MethodsWe propose using voxel‐basis and modeling its footprint in a box spline framework to calculate the Gram filter exactly and improve the performance of backprojection. In the special case of parallel X‐ray beam geometry, the forward and backprojection can be implemented by an estimated Gram filter efficiently if the sinogram signal is bandlimited. In this paper, a specialized sinogram interpolation method is proposed to eliminate the bandlimited prerequisite and thus improve the reconstruction accuracy. We build on this idea by utilizing the continuity of the voxel‐basis' footprint, which provides a more accurate sinogram interpolation and further improves the efficiency and quality of backprojection. In addition, the detector blur effect can be efficiently accounted for in our method to better handle realistic scenarios. ResultsThe proposed method is tested on both phantom and real computed tomography (CT) images under different resolutions, sinogram sampling steps, and noise levels. The proposed method consistently outperforms other state‐of‐the‐art projection models in terms of speed and accuracy for both backprojection and reconstruction. ConclusionsWe proposed a iterative reconstruction methodology for 3D parallel‐beam X‐ray CT reconstruction. Our experimental results demonstrate that the proposed methodology is accurate, fast, and reproducible, and outperforms alternative state‐of‐the‐art projection models on both backprojection and reconstruction results significantly.more » « less
-
Micro-CT, also known as X-ray micro-computed tomography, has emerged as the primary instrument for pore-scale properties study in geological materials. Several studies have used deep learning to achieve super-resolution reconstruction in order to balance the trade-off between resolution of CT images and field of view. Nevertheless, most existing methods only work with single-scale CT scans, ignoring the possibility of using multi-scale image features for image reconstruction. In this study, we proposed a super-resolution approach via multi-scale fusion using residual U-Net for rock micro-CT image reconstruction (MS-ResUnet). The residual U-Net provides an encoder-decoder structure. In each encoder layer, several residual sequential blocks and improved residual blocks are used. The decoder is composed of convolutional ReLU residual blocks and residual chained pooling blocks. During the encoding-decoding method, information transfers between neighboring multi-resolution images are fused, resulting in richer rock characteristic information. Qualitative and quantitative comparisons of sandstone, carbonate, and coal CT images demonstrate that our proposed algorithm surpasses existing approaches. Our model accurately reconstructed the intricate details of pores in carbonate and sandstone, as well as clearly visible coal cracks.more » « less
-
Inspired by their success in solving challenging inverse problems in computer vision, implicit neural representations (INRs) have been recently proposed for reconstruction in low-dose/sparse-view X-ray computed tomography (CT). An INR represents a CT image as a small-scale neural network that takes spatial coordinates as inputs and outputs attenuation values. Fitting an INR to sinogram data is similar to classical model-based iterative reconstruction methods. However, training INRs with losses and gradient-based algorithms can be prohibitively slow, taking many thousands of iterations to converge. This paper investigates strategies to accelerate the optimization of INRs for CT reconstruction. In particular, we propose two approaches: (1) using a modified loss function with improved conditioning, and (2) an algorithm based on the alternating direction method of multipliers. We illustrate that both of these approaches significantly accelerate INR-based reconstruction of a synthetic breast CT phantom in a sparse-view setting.more » « less
An official website of the United States government
