Nearly all plants are colonized by fungal endophytes, and a growing body of work shows that both environment and host species shape plant-associated fungal communities. However, few studies place their work in a phylogenetic context to understand endophyte community assembly through an evolutionary lens. Here we collected data to investigate environmental and host effects on root endophyte assemblages in coastal Louisiana marshes. We isolated and sequenced culturable fungal endophytes from roots of three-four dominant plant species from each of three sites of varying salinity. We provide data on abundance and taxonomy of the isolated fungal taxa as well as phylogenetic diversity (mean phylogenetic distance, MPD) and phylogenetic composition (based on MPD).
more »
« less
Environmental and host plant effects on taxonomic and phylogenetic diversity of root fungal endophytes
Abstract Nearly all plants are colonized by fungal endophytes, and a growing body of work shows that both environment and host species shape plant-associated fungal communities. However, few studies place their work in a phylogenetic context to understand endophyte community assembly through an evolutionary lens. Here, we investigated environmental and host effects on root endophyte assemblages in coastal Louisiana marshes. We isolated and sequenced culturable fungal endophytes from roots of three to four dominant plant species from each of three sites of varying salinity. We assessed taxonomic diversity and composition as well as phylogenetic diversity (mean phylogenetic distance, MPD) and phylogenetic composition (based on MPD). When we analyzed plant hosts present across the entire gradient, we found that the effect of the environment on phylogenetic diversity (as measured by MPD) was host dependent and suggested phylogenetic clustering in some circumstances. We found that both environment and host plant affected taxonomic composition of fungal endophytes, but only host plant affected phylogenetic composition, suggesting different host plants selected for fungal taxa drawn from distinct phylogenetic clades, whereas environmental assemblages were drawn from similar clades. Our study demonstrates that including phylogenetic, as well as taxonomic, community metrics can provide a deeper understanding of community assembly in endophytes.
more »
« less
- Award ID(s):
- 2141922
- PAR ID:
- 10576654
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- FEMS Microbiology Letters
- Volume:
- 372
- ISSN:
- 1574-6968
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chiang, Tzen-Yuh (Ed.)Eukaryotic hosts harbor tremendously diverse microbiomes that affect host fitness and response to environmental challenges. Fungal endophytes are prominent members of plant microbiomes, but we lack information on the diversity in functional traits affecting their interactions with their host and environment. We used two culturing approaches to isolate fungal endophytes associated with the widespread, dominant prairie grassAndropogon gerardiiand characterized their taxonomic diversity using rDNA barcode sequencing. A randomly chosen subset of fungi representing the diversity of each leaf was then evaluated for their use of different carbon compound resources and growth on those resources. Applying community phylogenetic analyses, we discovered that these fungal endophyte communities are comprised of phylogenetically distinct assemblages of slow- and fast-growing fungi that differ in their use and growth on differing carbon substrates. Our results demonstrate previously undescribed and cryptic functional diversity in carbon resource use and growth in fungal endophyte communities ofA.gerardii.more » « less
-
Abstract PremiseEndophytic plant‐microbe interactions range from mutualistic relationships that confer important ecological and agricultural traits to neutral or quasi‐parasitic relationships. In contrast to root‐associated endophytes, the role of environmental and host‐related factors in the acquisition of leaf endophyte communities at broad spatial and phylogenetic scales remains sparsely studied. We assessed endofoliar diversity to test the hypothesis that membership in these microbial communities is driven primarily by abiotic environment and host phylogeny. MethodsWe used a broad geographic coverage of North America in the genusHeucheraL. (Saxifragaceae), representing 32 species and varieties across 161 populations. Bacterial and fungal communities were characterized using 16S and ITS amplicon sequencing, respectively, and standard diversity metrics were calculated. We assembled environmental predictors for microbial diversity at collection sites, including latitude, elevation, temperature, precipitation, and soil parameters. ResultsAssembly patterns differed between bacterial and fungal endophytes. Host phylogeny was significantly associated with bacteria, while geographic distance was the best predictor of fungal community composition. Species richness and phylogenetic diversity were consistent across sites and species, with only fungi showing a response to aridity and precipitation for some metrics. Unlike what has been observed with root‐associated microbial communities, in this system microbes show no relationship with pH or other soil factors. ConclusionsOverall, this work improves our understanding of the large‐scale patterns of diversity and community composition in leaf endophytes and highlights the relative significance of environmental and host‐related factors in driving different microbial communities within the leaf microbiome.more » « less
-
ABSTRACT Disruptions to functionally important symbionts with global change will negatively impact plant fitness, with broader consequences for species' abundances, distribution, and community composition. Fungal endophytes that live inside plant leaves and roots could potentially mitigate plant heat stress from global warming. Conversely, disruptions of these symbioses could exacerbate the negative impacts of warming. To better understand the consistency and strength of warming‐induced changes to fungal endophytes, we examined fungal leaf and root endophytes in three grassland warming experiments in the US ranging from 2 to 25 years and spanning 2000 km, 12°C of mean annual temperature, and 600 mm of precipitation. We found that experimental warming disrupted symbiosis between plants and fungal endophytes. Colonization of plant tissues by septate fungi decreased in response to warming by 90% in plant leaves and 35% in roots. Warming also reduced fungal diversity and changed community composition in plant leaves, but not roots. The strength, but not direction, of warming effects on fungal endophytes varied by up to 75% among warming experiments. Finally, warming decoupled fungal endophytes from host metabolism by decreasing the correlation between endophyte community and host metabolome dissimilarity. These effects were strongest in the shorter‐term experiment, suggesting endophyte‐host metabolome function may acclimate to warming over decades. Overall, warming‐driven disruption of fungal endophyte community structure and function suggests that this symbiosis may not be a reliable mechanism to promote plant resilience and ameliorate stress responses under global change.more » « less
-
Abstract Foliar fungal endophytes are ubiquitous plant symbionts that can affect plant growth and reproduction via their roles in pathogen and stress tolerance, as well as plant hormonal signaling. Despite their importance, we have a limited understanding of how foliar fungal endophytes respond to varying environmental conditions such as nutrient inputs. The responses of foliar fungal endophyte communities to increased nutrient deposition may be mediated by the simultaneous effects on within‐host competition as well as the indirect impacts of altered host population size, plant productivity, and plant community diversity and composition. Here, we leveraged a 7‐yr experiment manipulating nitrogen, phosphorus, potassium, and micronutrients to investigate how nutrient‐induced changes to plant diversity, plant productivity, and plant community composition relate to changes in foliar fungal endophyte diversity and richness in a focal native grass host,Andropogon gerardii. We found limited evidence of direct effects of nutrients on endophyte diversity. Instead, the effects of nutrients on endophyte diversity appeared to be mediated by accumulation of plant litter and plant diversity loss. Specifically, nitrogen addition is associated with a 40% decrease in plant diversity and an 11% decrease in endophyte richness. Although nitrogen, phosphorus, and potassium addition increased aboveground live biomass and decreased relativeAndropogoncover, endophyte diversity did not covary with live plant biomass orAndropogoncover. Our results suggest that fungal endophyte diversity within this focal host is determined in part by the diversity of the surrounding plant community and its potential impact on immigrant propagules and dispersal dynamics. Our results suggest that elemental nutrients reduce endophyte diversity indirectly via impacts on the local plant community, not direct response to nutrient addition. Thus, the effects of global change drivers, such as nutrient deposition, on characteristics of host populations and the diversity of their local communities are important for predicting the response of symbiont communities in a changing global environment.more » « less
An official website of the United States government
