Since Darwin, biologists have sought to understand the evolution and origins of phenotypic adaptations. The skull is particularly diverse due to intense natural selection on feeding biomechanics. We investigated the genetic and molecular origins of trophic adaptation using Lake Malawi cichlids, which have undergone an exemplary evolutionary radiation. We analyzed morphological differences in the lateral and ventral head shape among an insectivore that eats by suction feeding, an obligate biting herbivore, and their F2 hybrids. We identified variation in a series of morphological traits—including mandible width, mandible length, and buccal length—that directly affect feeding kinematics and function. Using quantitative trait loci (QTL) mapping, we found that many genes of small effects influence these craniofacial adaptations. Intervals for some traits were enriched in genes related to potassium transport and sensory systems, the latter suggesting co-evolution of feeding structures and sensory adaptations for foraging. Despite these indications of co-evolution of structures, morphological traits did not show covariation. Furthermore, phenotypes largely mapped to distinct genetic intervals, suggesting that a common genetic basis does not generate coordinated changes in shape. Together, these suggest that craniofacial traits are mostly inherited as separate modules, which confers a high potential for the evolution of morphological diversity. Though these traits are not restricted by genetic pleiotropy, functional demands of feeding and sensory structures likely introduce constraints on variation. In all, we provide insights into the quantitative genetic basis of trophic adaptation, identify mechanisms that influence the direction of morphological evolution, and provide molecular inroads to craniofacial variation.
more »
« less
Parallel evolution of integrated craniofacial traits in trophic specialist pupfishes
Abstract Populations may adapt to similar environments via parallel or non‐parallel genetic changes, but the frequency of these alternative mechanisms and underlying contributing factors are still poorly understood outside model systems. We used QTL mapping to investigate the genetic basis of highly divergent craniofacial traits between the scale‐eater (Cyprinodon desquamator) and molluscivore (C. brontotheroides) pupfish adapting to two different hypersaline lake environments on San Salvador Island, Bahamas. We lab‐reared F2 scale‐eater x molluscivore intercrosses from two different lake populations, estimated linkage maps, scanned for significant QTL for 29 skeletal and craniofacial traits, female mate preference, and sex. We compared the location of QTL between lakes to quantify parallel and non‐parallel genetic changes. We detected significant QTL for six craniofacial traits in at least one lake. However, nearly all shared QTL loci were associated with a different craniofacial trait within each lake. Therefore, our estimate of parallel evolution of craniofacial genetic architecture could range from one out of six identical trait QTL (low parallelism) to five out of six integrated trait QTL (high parallelism). We suggest that pleiotropy and trait integration can affect estimates of parallel evolution, particularly within rapid radiations. We also observed increased adaptive introgression in shared QTL regions, suggesting that gene flow contributed to parallel evolution. Overall, our results suggest that the same genomic regions may contribute to parallel adaptation across integrated suites of craniofacial traits, rather than specific traits, and highlight the need for a more expansive definition of parallel evolution.
more »
« less
- Award ID(s):
- 1938571
- PAR ID:
- 10576812
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 14
- Issue:
- 7
- ISSN:
- 2045-7758
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
PremiseAcross taxa, vegetative and floral traits that vary along a fast‐slow life‐history axis are often correlated with leaf functional traits arrayed along the leaf economics spectrum, suggesting a constrained set of adaptive trait combinations. Such broad‐scale convergence may arise from genetic constraints imposed by pleiotropy (or tight linkage) within species, or from natural selection alone. Understanding the genetic basis of trait syndromes and their components is key to distinguishing these alternatives and predicting evolution in novel environments. MethodsWe used a line‐cross approach and quantitative trait locus (QTL) mapping to characterize the genetic basis of twenty leaf functional/physiological, life history, and floral traits in hybrids between annualized and perennial populations of scarlet monkeyflower (Mimulus cardinalis). ResultsWe mapped both single and multi‐trait QTLs for life history, leaf function and reproductive traits, but found no evidence of genetic co‐ordination across categories. A major QTL for three leaf functional traits (thickness, photosynthetic rate, and stomatal resistance) suggests that a simple shift in leaf anatomy may be key to adaptation to seasonally dry habitats. ConclusionsOur results suggest that the co‐ordination of resource‐acquisitive leaf physiological traits with a fast life‐history and more selfing mating system results from environmental selection rather than functional or genetic constraint. Independent assortment of distinct trait modules, as well as a simple genetic basis to leaf physiological traits associated with drought escape, may facilitate adaptation to changing climates.more » « less
-
Abstract Determining how adaptive combinations of traits arose requires understanding the prevalence and scope of genetic constraints. Frequently observed phenotypic correlations between plant growth, defenses, and/or reproductive timing have led researchers to suggest that pleiotropy or strong genetic linkage between variants affecting independent traits is pervasive. Alternatively, these correlations could arise via independent mutations in different genes for each trait and extensive correlational selection. Here we evaluate these alternatives by conducting a quantitative trait loci (QTL) mapping experiment involving a cross between 2 populations of common monkeyflower (Mimulus guttatus) that differ in growth rate as well as total concentration and arsenal composition of plant defense compounds, phenylpropanoid glycosides (PPGs). We find no evidence that pleiotropy underlies correlations between defense and growth rate. However, there is a strong genetic correlation between levels of total PPGs and flowering time that is largely attributable to a single shared QTL. While this result suggests a role for pleiotropy/close linkage, several other QTLs also contribute to variation in total PPGs. Additionally, divergent PPG arsenals are influenced by a number of smaller-effect QTLs that each underlie variation in 1 or 2 PPGs. This result indicates that chemical defense arsenals can be finely adapted to biotic environments despite sharing a common biochemical precursor. Together, our results show correlations between defense and life-history traits are influenced by pleiotropy or genetic linkage, but genetic constraints may have limited impact on future evolutionary responses, as a substantial proportion of variation in each trait is controlled by independent loci.more » « less
-
Abstract A major goal of modern biology is connecting phenotype with its underlying genetic basis. The Mexican cavefish (Astyanax mexicanus), a characin fish species comprised of a surface ecotype and a cave-derived ecotype, is well suited as a model to study the genetic mechanisms underlying adaptation to extreme environments. Here, we map 206 previously published quantitative trait loci (QTL) for cave-derived traits in A. mexicanus to the newest version of the surface fish genome assembly, AstMex3. These analyses revealed that QTL clusters in the genome more than expected by chance, and this clustering is not explained by the distribution of genes in the genome. To investigate whether certain characteristics of the genome facilitate phenotypic evolution, we tested whether genomic characteristics associated with increased opportunities for mutation, such as highly mutagenic CpG sites, are reliable predictors of the sites of trait evolution but did not find any significant trends. Finally, we combined the QTL map with previously collected expression and selection data to identify 36 candidate genes that may underlie the repeated evolution of cave phenotypes, including rgrb, which is predicted to be involved in phototransduction. We found this gene has disrupted exons in all non-hybrid cave populations but intact reading frames in surface fish. Overall, our results suggest specific regions of the genome may play significant roles in driving adaptation to the cave environment in A. mexicanus and demonstrate how this compiled dataset can facilitate our understanding of the genetic basis of repeated evolution in the Mexican cavefish.more » « less
-
Convergent evolution of root system architecture in two independently evolved lineages of weedy riceSummary Root system architecture (RSA) is a critical aspect of plant growth and competitive ability. Here we used two independently evolved strains of weedy rice, a de‐domesticated form of rice, to study the evolution of weed‐associatedRSAtraits and the extent to which they evolve through shared or different genetic mechanisms.We characterised 98 two‐dimensional and three‐dimensionalRSAtraits in 671 plants representing parents and descendants of two recombinant inbred line populations derived from two weed × crop crosses. A random forest machine learning model was used to assess the degree to which root traits can predict genotype and the most diagnostic traits for doing so. We used quantitative trait locus (QTL)mapping to compare genetic architecture between the weed strains.The two weeds were distinguishable from the crop in similar and predictable ways, suggesting independent evolution of a ‘weedy’RSAphenotype. Notably, comparativeQTLmapping revealed little evidence for shared underlying genetic mechanisms.Our findings suggest that despite the double bottlenecks of domestication and de‐domestication, weedy rice nonetheless shows genetic flexibility in the repeated evolution of weedyRSAtraits. Whereas the root growth of cultivated rice may facilitate interactions among neighbouring plants, the weedy rice phenotype may minimise below‐ground contact as a competitive strategy.more » « less