Bioengineering systems have transformed scientific knowledge of cellular behaviors in the nervous system (NS) and pioneered innovative, regenerative therapies to treat adult neural disorders. Microscale systems with characteristic lengths of single to hundreds of microns have examined the development and specialized behaviors of numerous neuromuscular and neurosensory components of the NS. The visual system is comprised of the eye sensory organ and its connecting pathways to the visual cortex. Significant vision loss arises from dysfunction in the retina, the photosensitive tissue at the eye posterior that achieves phototransduction of light to form images in the brain. Retinal regenerative medicine has embraced microfluidic technologies to manipulate stem-like cells for transplantation therapies, where de/differentiated cells are introduced within adult tissue to replace dysfunctional or damaged neurons. Microfluidic systems coupled with stem cell biology and biomaterials have produced exciting advances to restore vision. The current article reviews contemporary microfluidic technologies and microfluidics-enhanced bioassays, developed to interrogate cellular responses to adult retinal cues. The focus is on applications of microfluidics and microscale assays within mammalian sensory retina, or neuro retina, comprised of five types of retinal neurons (photoreceptors, horizontal, bipolar, amacrine, retinal ganglion) and one neuroglia (Müller), but excludes the non-sensory, retinal pigmented epithelium. 
                        more » 
                        « less   
                    This content will become publicly available on January 17, 2026
                            
                            Mammalian retinal specializations for high acuity vision evolve in response to both foraging strategies and morphological constraints
                        
                    
    
            Abstract Vision is a complex sensory system that requires coordination among cellular and morphological traits, and it remains unclear how functional relationships among traits interact with ecological selective pressures to shape the evolution of vision. Many species have specialized high visual acuity regions in the retina defined by patterns of ganglion cell density, which may evolve in response to ecological traits. For example, ganglion cell density can increase radially towards the center of the retina to form an area centralis, which is thought to improve acuity towards the center of the visual field in predators. Another example is the horizontal streak, where ganglion cells are dense in a horizontal pattern across the retina, which is thought to be beneficial in horizon-dominated habitats. At the morphological level, many have proposed that predation selects for high orbit convergence angles, or forward-facing eyes. We tested these hypotheses in a phylogenetic framework across eutherian mammals and found support for the association between the horizontal streak and horizon-dominated habitats. However, we did not find a significant association between orbit convergence and predation. We also tested if retinal specializations evolve in response to orbit convergence angles. We found that horizontal streaks were associated with side-facing eyes, potentially facilitating panoramic vision. Previous studies observed that some species with side-facing eyes have an area centralis shifted towards the temporal side of the retina, such that the high acuity region would project forward, but this relationship had not been tested quantitatively. We found that the temporal distance of the area centralis from the center of the retina was inversely correlated with orbit convergence, as predicted. Our work shows a strong relationship between orbit convergence and retinal specializations. We find support that both visual ecology and functional interactions among traits play important roles in the evolution of ocular traits across mammals. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2305797
- PAR ID:
- 10576873
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Evolution Letters
- ISSN:
- 2056-3744
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Microglia-mediated inflammation plays a significant role in neuronal and vascular damage in diabetic retinopathy (DR), but the mechanism linking inflammation, neurodegeneration, and impaired vascular integrity is still unclear. Previous studies from diabetic mouse models showed accumulation of fibrinogen at vessel lesions surrounded by perivascular microglial clusters. The purpose of this study was to evaluate whether the pathological hallmarks of gliosis and vascular aberrations characterized in diabetic animal models are consistent with those in diabetic human retinas, and to assess the effects of the defibrinogenating agent ancrod in retinal pathology and visual acuity in a two-hit inflammatory diabetic mouse model. Post-mortem human eyes were assessed for retinal and inflammatory gene expression by quantitative PCR. Immunohistochemical analyses in human and murine retinas were performed using markers of gliosis, vascular integrity, and fibrinogen deposition. An inflammatory microenvironment, with microgliosis and microaneurysms, was found in the diabetic human eye. Microglial activation, fibrinogen deposition, and axonal loss were also observed in the diabetic murine retina. Ancrod treatment correlated with reduced microgliosis, less fibrinogen deposition, and reduced pro-inflammatory cytokine levels in diseased retinal tissues. Together, these data suggest that fibrinogen contributes to microglia-mediated inflammation in the diabetic retina. Since retinal microgliosis, vascular pathology, and vision deficits manifest in diabetic mice irrespective of CX3CR1 genotype, our results indicate that defibrinogenation can dampen systemic neuroinflammation and vascular insults, thereby improving vision at early stages of diabetes. Summary Statement Diabetic human and murine retinas revealed pronounced microglial morphological activation and vascular abnormalities associated with inflammation. Pharmacological fibrinogen depletion using ancrod dampened microglial morphology alterations, resolved fibrinogen accumulation, rescued axonal integrity, and reduced inflammation in the diabetic murine retina.more » « less
- 
            Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S (Ed.)The human visual system uses two parallel pathways for spatial processing and object recognition. In contrast, computer vision systems tend to use a single feedforward pathway, rendering them less robust, adaptive, or efficient than human vision. To bridge this gap, we developed a dual-stream vision model inspired by the human eyes and brain. At the input level, the model samples two complementary visual patterns to mimic how the human eyes use magnocellular and parvocellular retinal ganglion cells to separate retinal inputs to the brain. At the backend, the model processes the separate input patterns through two branches of convolutional neural networks (CNN) to mimic how the human brain uses the dorsal and ventral cortical pathways for parallel visual processing. The first branch (WhereCNN) samples a global view to learn spatial attention and control eye movements. The second branch (WhatCNN) samples a local view to represent the object around the fixation. Over time, the two branches interact recurrently to build a scene representation from moving fixations. We compared this model with the human brains processing the same movie and evaluated their functional alignment by linear transformation. The WhereCNN and WhatCNN branches were found to differentially match the dorsal and ventral pathways of the visual cortex, respectively, primarily due to their different learning objectives, rather than their distinctions in retinal sampling or sensitivity to attention-driven eye movements. These model-based results lead us to speculate that the distinct responses and representations of the ventral and dorsal streams are more influenced by their distinct goals in visual attention and object recognition than by their specific bias or selectivity in retinal inputs. This dual-stream model takes a further step in brain-inspired computer vision, enabling parallel neural networks to actively explore and understand the visual surroundings.more » « less
- 
            Abstract Shape-morphable electrode arrays can form 3D surfaces to conform to complex neural anatomy and provide consistent positioning needed for next-generation neural interfaces. Retinal prostheses need a curved interface to match the spherical eye and a coverage of several cm to restore peripheral vision. We fabricated a full-field array that can (1) cover a visual field of 57° based on electrode position and of 113° based on the substrate size; (2) fold to form a compact shape for implantation; (3) self-deploy into a curvature fitting the eye after implantation. The full-field array consists of multiple polymer layers, specifically, a sandwich structure of elastomer/polyimide-based-electrode/elastomer, coated on one side with hydrogel. Electrodeposition of high-surface-area platinum/iridium alloy significantly improved the electrical properties of the electrodes. Hydrogel over-coating reduced electrode performance, but the electrodes retained better properties than those without platinum/iridium. The full-field array was rolled into a compact shape and, once implanted into ex vivo pig eyes, restored to a 3D curved surface. The full-field retinal array provides significant coverage of the retina while allowing surgical implantation through an incision 33% of the final device diameter. The shape-changing material platform can be used with other neural interfaces that require conformability to complex neuroanatomy.more » « less
- 
            Abstract The Aii glycinergic amacrine cell (Aii) plays a central role in bridging rod pathways with cone pathways, enabling an increased dynamic range of vision from scotopic to photopic ranges. The Aii integrates scotopic signals via chemical synapses from rod bipolar cells (RodBCs) onto the arboreal processes of Aii ACs, injecting signals into ON-cone bipolar cells (CBbs) via gap junctions with Aiis on the arboreal processes and the waist of the Aii ACs. The CBbs then carry this information to ON and OFF ganglion cell classes. In addition, the Aii is involved in the surround inhibition of OFF cone bipolar cells (CBas) through glycinergic chemical synapses from Aii ACs onto CBas. We have previously shown changes in RodBC connectivity as a consequence of rod photoreceptor degeneration in a pathoconnectome of early retinal degeneration: RPC1. Here, we evaluated the impact of rod photoreceptor degeneration on the connectivity of the Aii to determine the impacts of photoreceptor degeneration on the downstream network of the neural retina and its suitability for integrating therapeutic interventions as rod photoreceptors are lost. Previously, we reported that in early retinal degeneration, prior to photoreceptor cell loss, Rod BCs make pathological gap junctions with Aiis. Here, we further characterize this altered connectivity and additional shifts in both the excitatory drive and gap junctional coupling of Aiis in retinal degeneration, along with discussion of the broader impact of altered connectivity networks. New findings reported here demonstrate that Aiis make additional gap junctions with CBas increasing the number of BC classes that make pathological gap junctional connectivity with Aiis in degenerating retina. In this study, we also report that the Aii, a tertiary retinal neuron alters their synaptic contacts early in photoreceptor degeneration, indicating that rewiring occurs in more distant members of the retinal network earlier in degeneration than was previously predicted. This rewiring impacts retinal processing, presumably acuity, and ultimately its ability to support therapeutics designed to restore image-forming vision. Finally, these Aii alterations may be the cellular network level finding that explains one of the first clinical complaints from human patients with retinal degenerative disease, an inability to adapt back and forth from photopic to scotopic conditions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
