skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Anthropogenic organic aerosol in Europe produced mainly through second-generation oxidation
Abstract Exposure to anthropogenic atmospheric aerosol is a major health issue, causing several million deaths per year worldwide. The oxidation of aromatic hydrocarbons from traffic and wood combustion is an important anthropogenic source of low-volatility species in secondary organic aerosol, especially in heavily polluted environments. It is not yet established whether the formation of anthropogenic secondary organic aerosol involves mainly rapid autoxidation, slower sequential oxidation steps or a combination of the two. Here we reproduced a typical urban haze in the ‘Cosmics Leaving Outdoor Droplets’ chamber at the European Organization for Nuclear Research and observed the dynamics of aromatic oxidation products during secondary organic aerosol growth on a molecular level to determine mechanisms underlying their production and removal. We demonstrate that sequential oxidation is required for substantial secondary organic aerosol formation. Second-generation oxidation decreases the products’ saturation vapour pressure by several orders of magnitude and increases the aromatic secondary organic aerosol yields from a few percent to a few tens of percent at typical atmospheric concentrations. Through regional modelling, we show that more than 70% of the exposure to anthropogenic organic aerosol in Europe arises from second-generation oxidation.  more » « less
Award ID(s):
2132089 2215489
PAR ID:
10577162
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature Geoscience
Volume:
18
Issue:
3
ISSN:
1752-0894
Page Range / eLocation ID:
239 to 245
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gas-phase oxygenated organic molecules (OOMs) can contribute significantly to both atmospheric new particle growth and secondary organic aerosol formation. Precursor apportionment of atmospheric OOMs connects them with volatile organic compounds (VOCs). Since atmospheric OOMs are often highly functionalized products of multistep reactions, it is challenging to reveal the complete mapping relationships between OOMs and their precursors. In this study, we demonstrate that the machine learning method is useful in attributing atmospheric OOMs to their precursors using several chemical indicators, such as O/C ratio and H/C ratio. The model is trained and tested using data acquired in controlled laboratory experiments, covering the oxidation products of four main types of VOCs (isoprene, monoterpenes, aliphatics, and aromatics). Then, the model is used for analyzing atmospheric OOMs measured in both urban Beijing and a boreal forest environment in southern Finland. The results suggest that atmospheric OOMs in these two environments can be reasonably assigned to their precursors. Beijing is an anthropogenic VOC dominated environment with ∼64% aromatic and aliphatic OOMs, and the other boreal forested area has ∼76% monoterpene OOMs. This pilot study shows that machine learning can be a promising tool in atmospheric chemistry for connecting the dots. 
    more » « less
  2. Organosulfates (OSs) formed from heterogeneous reactions of organic-derived oxidation products with sulfate ions are an important component of secondary organic aerosol (SOA) mass, primarily in submicron particles with long atmospheric lifetimes. Fundamental understanding of OS evolution in particles, including the formation of new compounds via oxidation, is limited, particularly across relative humidities above and below the deliquescence of typical sulfate aerosol particles. By generating aqueous particulate OSs and other SOA products from the acid-driven reactive uptake of isoprene epoxydiols (IEPOX) onto inorganic sulfate aerosols in a 2-m3 indoor chamber at various relative humidities (30 – 80%) and injecting them into an oxidation flow reactor under the presence of hydroxyl radicals (·OH), we investigate the modification of particle size distributions, extent of inorganic sulfate conversion to organosulfates, and single-particle physicochemical properties. Chemical composition of particle-phase species, as well as aerosol morphological changes, are analyzed as a function of relative humidity and oxidant exposure times to better understand OS formation and destruction mechanisms in the ambient atmosphere. 
    more » « less
  3. The UNIfied Partitioning-Aerosol phase Reaction (UNIPAR) model was established on the Comprehensive Air quality Model with extensions (CAMx) to process Secondary Organic Aerosol (SOA) formation by capturing multiphase reactions of hydrocarbons (HCs) in regional scales. SOA growth was simulated using a wide range of anthropogenic HCs including ten aromatics and linear alkanes with different carbon-lengths. The atmospheric processes of biogenic HCs (isoprene, terpenes, and sesquiterpene) were simulated for the major oxidation paths (ozone, OH radicals, and nitrate radicals) to predict day and night SOA formation. The UNIPAR model streamlined the multiphase partitioning of the lumping species originating from semi-explicitly predicted gas products and their heterogeneous chemistry to form non-volatile oligomeric species in both organic aerosol and inorganic aqueous phase. The CAMx-UNIPAR model predicted SOA formation at four ground urban sites (San Jose, Sacramento, Fresno, and Bakersfield) in California, United States during wintertime 2018. Overall, the simulated mass concentrations of the total organic matter, consisting of primary OA (POA) and SOA, showed a good agreement with the observations. The simulated SOA mass in the urban areas of California was predominated by alkane and terpene. During the daytime, low-volatile products originating from the autoxidation of long-chain alkanes considerably contributed to the SOA mass. In contrast, a significant amount of nighttime SOA was produced by the reaction of terpene with ozone or nitrate radicals. The spatial distributions of anthropogenic SOA associated with aromatic and alkane HCs were noticeably affected by the southward wind direction owing to the relatively long lifetime of their atmospheric oxidation, whereas those of biogenic SOA were nearly insensitive to wind direction. During wintertime 2018, the impact of inorganic aerosol hygroscopicity on the total SOA budget was not evident because of the small contribution of aromatic and isoprene products that are hydrophilic and reactive in the inorganic aqueous phase. However, an increased isoprene SOA mass was predicted during the wet periods, although its contribution to the total SOA was little. 
    more » « less
  4. Abstract We present a new volatility basis set (VBS) representation of aromatic secondary organic aerosol (SOA) for atmospheric chemistry models by fitting a statistical oxidation model with aerosol microphysics (SOM‐TOMAS) to results from laboratory chamber experiments. The resulting SOM‐VBS scheme also including previous work on SOA formation from semi‐ and intermediate volatile organic compounds (S/IVOCs) is implemented in the GEOS‐Chem chemical transport model and applied to simulation of observations from the Korea‐United States Air Quality Study (KORUS‐AQ) field campaign over South Korea in May–June 2016. Our SOM‐VBS scheme can simulate the KORUS‐AQ organic aerosol (OA) observations from aircraft and surface sites better than the default schemes used in GEOS‐Chem including for vertical profiles, diurnal cycle, and partitioning between hydrocarbon‐like OA and oxidized OA. Our results confirm the important contributions of oxidized primary OA and aromatic SOA found in previous analyses of the KORUS‐AQ data and further show a large contribution from S/IVOCs. Model source attribution of OA in surface air over South Korea indicates one third from domestic anthropogenic emissions, with a large contribution from toluene and xylenes, one third from external anthropogenic emissions, and one third from natural emissions. 
    more » « less
  5. Abstract Number: 99 Working Group: Aerosol Chemistry Abstract Isoprene, the largest non-methane volatile organic species emitted into Earth’s atmosphere, reacts with hydroxyl radicals to initiate formation of secondary organic aerosol (SOA). Under low nitric oxide conditions, the major oxidative pathway proceeds through acid catalyzed reactive uptake of isoprene-epoxydiol isomers (IEPOX). We have recently established the structures of the semivolatile C5H10O3 uptake products (formerly designated “C5-alkene triols) of cis- and trans-β-IEPOX as 3-methylenebutane-1,2,4-triol and isomeric 3-methyltetrahydrofuran-2,4-diols. Importantly, both uptake products showed significant partitioning into the gas phase. Here, we report evidence that the uptake products along with their gas phase oxidation products constitute a hitherto unrecognized source of SOA. We show that partitioning into the gas phase results in further oxidation into low volatility products, including highly oxygenated C5-polyols, organosulfates, and dimers. In the chamber studies, gas phase products were characterized by online by iodide-Chemical Ionization Mass Spectrometry (I-CIMS) and particle phase products by offline analysis of filter extracts by HILIC/(-)ESI-HR-QTOFMS using authentic standards. The chamber studies show the potential for a substantial contribution to SOA from reactive uptake of the second generation gas phase oxidation products onto both acidified and non-acidified ammonium bisulfate seed aerosols. Identification of these previously unrecognized early-generation oxidation products will improve estimates of atmospheric carbon distribution and advance our understanding of the fate of isoprene oxidation products in the atmosphere. 
    more » « less