In domains where measures of utility for automatically-designed artefacts (or agents performing subjective tasks) are difficult or impossible to mathematically describe (such as ‘be interesting’), human interactive search algorithms are an attractive alternative. However, despite notable achievements, they are still designed around a specific search method, resulting in a lack of problem generality: applying a new search algorithm requires an excessive amount of redesign such that an altogether new interactive method is formed in the process. This leads to missed opportunities for human interactive methods to utilize the power of state of the art optimization algorithms. Here, we introduce for the first time a framework for human interactive optimization that is agnostic to both the search method and the application problem. Using 13 different search methods on 24 fitness functions commonly found in evolutionary algorithm benchmarks, we show that our approach works on the majority of tested applications: many of the search methods, provided with access to the fitness functions, performed no better than our framework, which employs surrogate human participants who act as less informed and erroneous representations of the fitness function. In this way, our framework for interactive optimization provides a scalable solution by facilitating the integration of numerous types of current state of the art or future search algorithms. Future work will involve generalizing this method to admit multi-objective optimization methods and validation with human participants.
more »
« less
Curriculum Generation for Learning Guiding Functions in State-Space Search Algorithms
This paper investigates methods for training parameterized functions for guiding state-space search algorithms. Existing work commonly generates data for training such guiding functions by solving problem instances while leveraging the current version of the guiding function. As a result, as training progresses, the guided search algorithm can solve more difficult instances that are, in turn, used to further train the guiding function. These methods assume that a set of problem instances of varied difficulty is provided. Since previous work was not designed to distinguish the instances that the search algorithm can solve from those that cannot be solved with the current guiding function, the algorithm commonly wastes time attempting and failing to solve many of these instances. In this paper, we improve upon these training methods by generating a curriculum for learning the guiding function that directly addresses this issue. Namely, we propose and evaluate a Teacher-Student Curriculum (TSC) approach where the teacher is an evolutionary strategy that attempts to generate problem instances of ``correct difficulty'' and the student is a guided search algorithm utilizing the current guiding function. The student attempts to solve the problem instances generated by the teacher. We conclude with experiments demonstrating that TSC outperforms the current state-of-the-art Bootstrap Learning method in three representative benchmark domains and three guided search algorithms, with respect to the time required to solve all instances of the test set.
more »
« less
- Award ID(s):
- 2238979
- PAR ID:
- 10577186
- Publisher / Repository:
- Vol. 17 (2024): Seventeenth International Symposium on Combinatorial Search
- Date Published:
- Journal Name:
- Proceedings of the International Symposium on Combinatorial Search
- Volume:
- 17
- ISSN:
- 2832-9171
- Page Range / eLocation ID:
- 91 to 99
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Search-based test generation is guided by feedback from one or more fitness functions—scoring functions that judge solution optimality. Choosing informative fitness functions is crucial to meeting the goals of a tester. Unfortunately, many goals—such as forcing the class-under-test to throw exceptions— do not have a known fitness function formulation. We propose that meeting such goals requires treating fitness function identification as a secondary optimization step. An adaptive algorithm that can vary the selection of fitness functions could adjust its selection throughout the generation process to maximize goal attainment, based on the current population of test suites. To test this hypothesis, we have implemented two reinforcement learning algorithms in the EvoSuite framework, and used these algorithms to dynamically set the fitness functions used during generation. We have evaluated our framework, EvoSuiteFIT, on a set of 386 real faults. EvoSuiteFIT discovers and retains more exception-triggering input and produces suites that detect a variety of faults missed by the other techniques. The ability to adjust fitness functions allows EvoSuiteFIT to make strategic choices that efficiently produce more effective test suites.more » « less
-
Purpose Marine transportation has been faced with an increasing demand for containerized cargo during the past decade. Marine container terminals (MCTs), as the facilities for connecting seaborne and inland transportation, are expected to handle the increasing amount of containers, delivered by vessels. Berth scheduling plays an important role for the total throughput of MCTs as well as the overall effectiveness of the MCT operations. This study aims to propose a novel island-based metaheuristic algorithm to solve the berth scheduling problem and minimize the total cost of serving the arriving vessels at the MCT. Design/methodology/approach A universal island-based metaheuristic algorithm (UIMA) was proposed in this study, aiming to solve the spatially constrained berth scheduling problem. The UIMA population was divided into four sub-populations (i.e. islands). Unlike the canonical island-based algorithms that execute the same metaheuristic on each island, four different population-based metaheuristics are adopted within the developed algorithm to search the islands, including the following: evolutionary algorithm (EA), particle swarm optimization (PSO), estimation of distribution algorithm (EDA) and differential evolution (DE). The adopted population-based metaheuristic algorithms rely on different operators, which facilitate the search process for superior solutions on the UIMA islands. Findings The conducted numerical experiments demonstrated that the developed UIMA algorithm returned near-optimal solutions for the small-size problem instances. As for the large-size problem instances, UIMA was found to be superior to the EA, PSO, EDA and DE algorithms, which were executed in isolation, in terms of the obtained objective function values at termination. Furthermore, the developed UIMA algorithm outperformed various single-solution-based metaheuristic algorithms (including variable neighborhood search, tabu search and simulated annealing) in terms of the solution quality. The maximum UIMA computational time did not exceed 306 s. Research limitations/implications Some of the previous berth scheduling studies modeled uncertain vessel arrival times and/or handling times, while this study assumed the vessel arrival and handling times to be deterministic. Practical implications The developed UIMA algorithm can be used by the MCT operators as an efficient decision support tool and assist with a cost-effective design of berth schedules within an acceptable computational time. Originality/value A novel island-based metaheuristic algorithm is designed to solve the spatially constrained berth scheduling problem. The proposed island-based algorithm adopts several types of metaheuristic algorithms to cover different areas of the search space. The considered metaheuristic algorithms rely on different operators. Such feature is expected to facilitate the search process for superior solutions.more » « less
-
null (Ed.)Solving the Multi-Agent Path Finding (MAPF) problem optimally is known to be NP-Hard for both make-span and total arrival time minimization. While many algorithms have been developed to solve MAPF problems, there is no dominating optimal MAPF algorithm that works well in all types of problems and no standard guidelines for when to use which algorithm. In this work, we develop the deep convolutional network MAPFAST (Multi-Agent Path Finding Algorithm SelecTor), which takes a MAPF problem instance and attempts to select the fastest algorithm to use from a portfolio of algorithms. We improve the performance of our model by including single-agent shortest paths in the instance embedding given to our model and by utilizing supplemental loss functions in addition to a classification loss. We evaluate our model on a large and di- verse dataset of MAPF instances, showing that it outperforms all individual algorithms in its portfolio as well as the state-of-the-art optimal MAPF algorithm selector. We also provide an analysis of algorithm behavior in our dataset to gain a deeper understanding of optimal MAPF algorithms’ strengths and weaknesses to help other researchers leverage different heuristics in algorithm designs.more » « less
-
Binary classification is a fundamental machine learning task defined as correctly assigning new objects to one of two groups based on a set of training objects. Driven by the practical importance of binary classification, numerous machine learning techniques have been developed and refined over the last three decades. Among the most popular techniques are artificial neural networks, decision trees, ensemble methods, logistic regression, and support vector machines. We present here machine learning and pattern recognition algorithms that, unlike the commonly used techniques, are based on combinatorial optimization and make use of information on pairwise relations between the objects of the data set, whether training objects or not. These algorithms solve the respective problems optimally and efficiently, in contrast to the primarily heuristic approaches currently used for intractable problem models in pattern recognition and machine learning. The algorithms described solve efficiently the classification problem as a network flow problem on a graph. The technical tools used in the algorithm are the parametric cut procedure and a process called sparse computation that computes only the pairwise similarities that are “relevant.” Sparse computation enables the scalability of any algorithm that uses pairwise similarities. We present evidence on the effectiveness of the approaches, measured in terms of accuracy and running time, in pattern recognition, image segmentation, and general data mining.more » « less
An official website of the United States government

