Concordance invariants of knots are derived from the instanton homology groups with local coefficients, as introduced in earlier work of the authors. These concordance invariants include a 1-parameter family of homomorphisms fr , from the knot concordance group to R. Prima facie, these concordance invariants have the potential to provide independent bounds on the genus and number of double points for immersed surfaces with boundary a given knot.
more »
« less
A note on cables and the involutive concordance invariants
Abstract We prove a formula for the involutive concordance invariants of the cabled knots in terms of those of the companion knot and the pattern knot. As a consequence, we show that any iterated cable of a knot with parameters of the form (odd,1) is not smoothly slice as long as either of the involutive concordance invariants of the knot is nonzero. Our formula also gives new bounds for the unknotting number of a cabled knot, which are sometimes stronger than other known bounds coming from knot Floer homology.
more »
« less
- Award ID(s):
- 2019396
- PAR ID:
- 10577326
- Publisher / Repository:
- Oxford University Press (OUP)
- Date Published:
- Journal Name:
- Bulletin of the London Mathematical Society
- Volume:
- 57
- Issue:
- 5
- ISSN:
- 0024-6093
- Format(s):
- Medium: X Size: p. 1593-1604
- Size(s):
- p. 1593-1604
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We consider the set of connected surfaces in the 4‐ball with boundary a fixed knot in the 3‐sphere. We define the stabilization distance between two surfaces as the minimal such that we can get from one to the other using stabilizations and destabilizations through surfaces of genus at most . Similarly, we consider a double‐point distance between two surfaces of the same genus that is the minimum over all regular homotopies connecting the two surfaces of the maximal number of double points appearing in the homotopy. To many of the concordance invariants defined using Heegaard Floer homology, we construct an analogous invariant for a pair of surfaces. We show that these give lower bounds on the stabilization distance and the double‐point distance. We compute our invariants for some pairs of deform‐spun slice disks by proving a trace formula on the full infinity knot Floer complex, and by determining the action on knot Floer homology of an automorphism of the connected sum of a knot with itself that swaps the two summands. We use our invariants to find pairs of slice disks with arbitrarily large distance with respect to many of the metrics we consider in this paper. We also answer a slice‐disk analog of Problem 1.105 (B) from Kirby's problem list by showing the existence of non‐0‐cobordant slice disks.more » « less
-
Abstract We define several equivariant concordance invariants using knot Floer homology. We show that our invariants provide a lower bound for the equivariant slice genus and use this to give a family of strongly invertible slice knots whose equivariant slice genus grows arbitrarily large, answering a question of Boyle and Issa. We also apply our formalism to several seemingly nonequivariant questions. In particular, we show that knot Floer homology can be used to detect exotic pairs of slice disks, recovering an example due to Hayden, and extend a result due to Miller and Powell regarding stabilization distance. Our formalism suggests a possible route toward establishing the noncommutativity of the equivariant concordance group.more » « less
An official website of the United States government
