skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CAX control: multiple roles of vacuolar cation/H + exchangers in metal tolerance, mineral nutrition and environmental signalling
Abstract Plant vacuolar transporters, particularly CAX (Cation/H+Exchangers) responsible for Ca2+/H+exchange on the vacuole tonoplast, play a central role in governing cellular pH, ion balance, nutrient storage, metal accumulation, and stress responses. Furthermore, CAX variants have been employed to enhance the calcium content of crops, contributing to biofortification efforts. Recent research has uncovered the broader significance of these transporters in plant signal transduction and element partitioning. The use of genetically encoded Ca2+sensors has begun to highlight the crucial role of CAX isoforms in generating cytosolic Ca2+signals, underscoring their function as pivotal hubs in diverse environmental and developmental signalling networks. Interestingly, it has been observed that the loss of CAX function can be advantageous in specific stress conditions, both for biotic and abiotic stressors. Determining the optimal timing and approach for modulating the expression of CAX is a critical concern. In the future, strategically manipulating the temporal loss of CAX function in agriculturally important crops holds promise to bolster plant immunity, enhance cold tolerance, and fortify resilience against one of agriculture's most significant challenges, namely flooding.  more » « less
Award ID(s):
2042513
PAR ID:
10577334
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Plant Biology
Volume:
26
Issue:
6
ISSN:
1435-8603
Page Range / eLocation ID:
911 to 919
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Multiple Arabidopsis H+/Cation exchangers (CAXs) participate in high‐capacity transport into the vacuole. Previous studies have analysed single and double mutants that marginally reduced transport; however, assessing phenotypes caused by transport loss has proven enigmatic. Here, we generated quadruple mutants (cax1‐4: qKO) that exhibited growth inhibition, an 85% reduction in tonoplast‐localised H+/Ca transport, and enhanced tolerance to anoxic conditions compared to CAX1 mutants. Leveraging inductively coupled plasma mass spectrometry (ICP‐MS) and synchrotron X‐ray fluorescence (SXRF), we demonstrate CAX transporters work together to regulate leaf elemental content: ICP‐MS analysis showed that the elemental concentrations in leaves strongly correlated with the number of CAX mutations; SXRF imaging showed changes in element partitioning not present in single CAX mutants and qKO had a 40% reduction in calcium (Ca) abundance. Reduced endogenous Ca may promote anoxia tolerance; wild‐type plants grown in Ca‐limited conditions were anoxia tolerant. Sequential reduction of CAXs increased mRNA expression and protein abundance changes associated with reactive oxygen species and stress signalling pathways. Multiple CAXs participate in postanoxia recovery as their concerted removal heightened changes in postanoxia Ca signalling. This work showcases the integrated and diverse function of H+/Cation transporters and demonstrates the ability to improve anoxia tolerance through diminishing endogenous Ca levels. 
    more » « less
  2. Summary Flooding represents a major threat to global agricultural productivity and food security, but plants are capable of deploying a suite of adaptive responses that can lead to short‐ or longer‐term survival to this stress. One cellular pathway thought to help coordinate these responses is via flooding‐triggered Ca2+signaling.We have mined publicly available transcriptomic data from Arabidopsis subjected to flooding or low oxygen stress to identify rapidly upregulated, Ca2+‐related transcripts. We then focused on transporters likely to modulate Ca2+signals. Candidates emerging from this analysis includedAUTOINHIBITED Ca2+ATPASE 1andCATION EXCHANGER 2. We therefore assayed mutants in these genes for flooding sensitivity at levels from growth to patterns of gene expression and the kinetics of flooding‐related Ca2+changes.Knockout mutants inCAX2especially showed enhanced survival to soil waterlogging coupled with suppressed induction of many marker genes for hypoxic response and constitutive activation of others.CAX2mutants also generated larger and more sustained Ca2+signals in response to both flooding and hypoxic challenges.CAX2 is a Ca2+transporter located on the tonoplast, and so these results are consistent with an important role for vacuolar Ca2+transport in the signaling systems that trigger flooding response. 
    more » « less
  3. Abstract The transport of Ca2+across membranes precedes the fusion and fission of various lipid bilayers. Yeast vacuoles under hyperosmotic stress become fragmented through fission events that requires the release of Ca2+stores through the TRP channel Yvc1. This requires the phosphorylation of phosphatidylinositol‐3‐phosphate (PI3P) by the PI3P‐5‐kinase Fab1 to produce transient PI(3,5)P2pools. Ca2+is also released during vacuole fusion upontrans‐SNARE complex assembly, however, its role remains unclear. The effect of PI(3,5)P2on Ca2+flux during fusion was independent of Yvc1. Here, we show that while low levels of PI(3,5)P2were required for Ca2+uptake into the vacuole, increased concentrations abolished Ca2+efflux. This was as shown by the addition of exogenous dioctanoyl PI(3,5)P2or increased endogenous production of by the hyperactivefab1T2250Amutant. In contrast, the lack of PI(3,5)P2on vacuoles from the kinase deadfab1EEEmutant showed delayed and decreased Ca2+uptake. The effects of PI(3,5)P2were linked to the Ca2+pump Pmc1, as its deletion rendered vacuoles resistant to the effects of excess PI(3,5)P2. Experiments with Verapamil inhibited Ca2+uptake when added at the start of the assay, while adding it after Ca2+had been taken up resulted in the rapid expulsion of Ca2+. Vacuoles lacking both Pmc1 and the H+/Ca2+exchanger Vcx1 lacked the ability to take up Ca2+and instead expelled it upon the addition of ATP. Together these data suggest that a balance of efflux and uptake compete during the fusion pathway and that the levels of PI(3,5)P2can modulate which path predominates. 
    more » « less
  4. AbstractPrecise regulation of sarcomeric contraction is essential for normal cardiac function. The heart must generate sufficient force to pump blood throughout the body, but either inadequate or excessive force can lead to dysregulation and disease. Myosin regulatory light chain (RLC) is a thick‐filament protein that binds to the neck of the myosin heavy chain. Post‐translational phosphorylation of RLC (RLC‐P) by myosin light chain kinase is known to influence acto‐myosin interactions, thereby increasing force production and Ca2+‐sensitivity of contraction. Here, we investigated the role of RLC‐P on cardiac structure and function as sarcomere length and [Ca2+] were altered. We found that at low, non‐activating levels of Ca2+, RLC‐P contributed to myosin head disorder, though there were no effects on isometric stress production and viscoelastic stiffness. With increases in sarcomere length and Ca2+‐activation, the structural changes due to RLC‐P become greater, which translates into greater force production, greater viscoelastic stiffness, slowed myosin detachment rates and altered nucleotide handling. Altogether, these data suggest that RLC‐P may alter thick‐filament structure by releasing ordered, off‐state myosin. These more disordered myosin heads are available to bind actin, which could result in greater force production as Ca2+levels increase. However, prolonged cross‐bridge attachment duration due to slower ADP release could delay relaxation long enough to enable cross‐bridge rebinding. Together, this work further elucidates the effects of RLC‐P in regulating muscle function, thereby promoting a better understanding of thick‐filament regulatory contributions to cardiac function in health and disease.image Key pointsMyosin regulatory light chain (RLC) is a thick‐filament protein in the cardiac sarcomere that can be phosphorylated (RLC‐P), and changes in RLC‐P are associated with cardiac dysfunction and disease.This study assesses how RLC‐P alters cardiac muscle structure and function at different sarcomere lengths and calcium concentrations.At low, non‐activating levels of Ca2+, RLC‐P contributed to myofilament disorder, though there were no effects on isometric stress production and viscoelastic stiffness.With increases in sarcomere length and Ca2+‐activation, the structural changes due to RLC‐P become greater, which translates into greater force production, greater viscoelastic stiffness, slower myosin detachment rate and altered cross‐bridge nucleotide handling rates.This work elucidates the role of RLC‐P in regulating muscle function and facilitates understanding of thick‐filament regulatory protein contributions to cardiac function in health and disease. 
    more » « less
  5. SUMMARY Plants respond to low temperatures by altering the mRNA abundance of thousands of genes contributing to numerous physiological and metabolic processes that allow them to adapt. At the post‐transcriptional level, these cold stress‐responsive transcripts undergo alternative splicing, microRNA‐mediated regulation and alternative polyadenylation, amongst others. Recently, m6A, m5C and other mRNA modifications that can affect the regulation and stability of RNA were discovered, thus revealing another layer of post‐transcriptional regulation that plays an important role in modulating gene expression. The importance of m6A in plant growth and development has been appreciated, although its significance under stress conditions is still underexplored. To assess the role of m6A modifications during cold stress responses, methylated RNA immunoprecipitation sequencing was performed in Arabidopsis seedlings esposed to low temperature stress (4°C) for 24 h. This transcriptome‐wide m6A analysis revealed large‐scale shifts in this modification in response to low temperature stress. Because m6A is known to affect transcript stability/degradation and translation, we investigated these possibilities. Interestingly, we found that cold‐enriched m6A‐containing transcripts demonstrated the largest increases in transcript abundance coupled with increased ribosome occupancy under cold stress. The significance of the m6A epitranscriptome on plant cold tolerance was further assessed using themtamutant in which the major m6A methyltransferase gene was mutated. Compared to the wild‐type, along with the differences inCBFsandCORgene expression levels, themtamutant exhibited hypersensitivity to cold treatment as determined by primary root growth, biomass, and reactive oxygen species accumulation. Furthermore, and most importantly, both non‐acclimated and cold‐acclimatedmtamutant demonstrated hypersensitivity to freezing tolerance. Taken together, these findings suggest a critical role for the epitranscriptome in cold tolerance of Arabidopsis. 
    more » « less