skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 15, 2026

Title: Deciphering the flapping frequency allometry: unveiling the role of sustained body attitude in the aerodynamic scaling of normal hovering animals
Hovering flight helps facilitate feeding, pollination, and courtship. Observed only in smaller flying animals, hover kinematic characteristics are diverse except for the decreasing flapping frequency with the animal size. Although studies have shown that these wing patterns enable distinct unsteady aerodynamic mechanisms, the role of flapping frequency scaling remains a source of disagreement. Here we show that negative allometry of the flapping frequency is required to sustain body attitude during hovering, consistent with experimental data of hovering animals, from fruit flies to hummingbirds, reported in the literature. The derived scaling model reveals that the lift coefficient and reduced frequency remain invariant with mass, enabling leading-edge vortex formation and wake-capture for a wide range of fliers to hover.  more » « less
Award ID(s):
1761618
PAR ID:
10577338
Author(s) / Creator(s):
; ;
Publisher / Repository:
The company of biologists
Date Published:
Journal Name:
Biology Open
Volume:
14
Issue:
3
ISSN:
2046-6390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Flapping flight of animals has captured the interest of researchers due to their impressive flight capabilities across diverse environments including mountains, oceans, forests, and urban areas. Despite the significant progress made in understanding flapping flight, high-altitude flight as showcased by many migrating animals remains underexplored. At high-altitudes, air density is low, and it is challenging to produce lift. Here we demonstrate a first lift-off of a flapping wing robot in a low-density environment through wing size and motion scaling. Force measurements showed that the lift remained high at 0.14 N despite a 66% reduction of air density from the sea-level condition. The flapping amplitude increased from 148 to 233 degrees, while the pitch amplitude remained nearly constant at 38.2 degrees. The combined effect is that the flapping-wing robot benefited from the angle of attack that is characteristic of flying animals. Our results suggest that it is not a simple increase in the flapping frequency, but a coordinated increase in the wing size and reduction in flapping frequency enables the flight in lower density condition. The key mechanism is to preserve the passive rotations due to wing deformation, confirmed by a bioinspired scaling relationship. Our results highlight the feasibility of flight under a low-density, high-altitude environment due to leveraging unsteady aerodynamic mechanisms unique to flapping wings. We anticipate our experimental demonstration to be a starting point for more sophisticated flapping wing models and robots for autonomous multi-altitude sensing. Furthermore, it is a preliminary step towards flapping wing flight in the ultra-low density Martian atmosphere. 
    more » « less
  2. Aeromechanics of highly flexible flapping wings is a complex nonlinear fluid–structure interaction problem and, therefore, cannot be analyzed using conventional linear aeroelasticity methods. This paper presents a standalone coupled aeroelastic framework for highly flexible flapping wings in hover for micro air vehicle (MAV) applications. The MAV-scale flapping wing structure is modeled using fully nonlinear beam and shell finite elements. A potential-flow-based unsteady aerodynamic model is then coupled with the structural model to generate the coupled aeroelastic framework. Both the structural and aerodynamic models are validated independently before coupling. Instantaneous lift force and wing deflection predictions from the coupled aeroelastic simulations are compared with the force and deflection measurements (using digital image correlation) obtained from in-house flapping wing experiments at both moderate (13 Hz) and high (20 Hz) flapping frequencies. Coupled trim analysis is then performed by simultaneously solving wing response equations and vehicle trim equations until trim controls, wing elastic response, inflow and circulation converge all together. The dependence of control inputs on weight and center of gravity (cg) location of the vehicle is studied for the hovering flight case. 
    more » « less
  3. Flapping ight dynamics constitutes a multi-body, nonlinear, time-varying system. The two major simplifying assumptions in the analysis of apping ight stability are neglecting the wing inertial e ects and averaging the dynamics over the apping cycle. The challenges resulting from relaxing these assumptions naturally invoke the geometric control theory as an appropriate analysis tool. In this work, a reduced-order model (extracted from the full model derived in the rst part of this work) for the longitudinal apping ight dynamics near hover is considered and represented in a geometric control framework. Then, combining tools from geometric control theory and averaging, the full dynamic stability as well as balance analyses of hovering insects are performed. 
    more » « less
  4. Abstract Insect wings are heterogeneous structures, with flexural rigidity varying one to two orders of magnitude over the wing surface. This heterogeneity influences the deformation the flapping wing experiences during flight. However, it is not well understood how this flexural rigidity gradient affects wing performance. Here, we develop a simplified 2D model of a flapping wing as a pitching, plunging airfoil using the assumed mode method and unsteady vortex lattice method to model the structural and fluid dynamics, respectively. We conduct parameter studies to explore how variable flexural rigidity affects mean lift production, power consumption and the forces required to flap the wing. We find that there is an optimal flexural rigidity distribution that maximizes lift production; this distribution generally corresponds to a 3:1 ratio between the wing’s flapping and natural frequencies, though the ratio is sensitive to flapping kinematics. For hovering flight, the optimized flexible wing produces 20% more lift and requires 15% less power compared to a rigid wing but needs 20% higher forces to flap. Even when flapping kinematics deviate from those observed during hover, the flexible wing outperforms the rigid wing in terms of aerodynamic force generation and power across a wide range of flexural rigidity gradients. Peak force requirements and power consumption are inversely proportional with respect to flexural rigidity gradient, which may present a trade-off between insect muscle size and energy storage requirements. The model developed in this work can be used to efficiently investigate other spatially variant morphological or material wing features moving forward. 
    more » « less
  5. Abstract In this paper, we first presented a four-bar linkage mechanism for actuating the wings in a flapping wing flying robot. After that, given the additional constraints imposed by the four-bar linkage, we parameterized the wing kinematics to provide sufficient control authority for stabilizing the system during 3D hovering. The four-bar linkage allows the motors to spin continuously in one direction while generating flapping motion on the wings. However, this mechanism constrains the flapping angle range which is a common control parameter in controlling such systems. To address this problem, we divided each wingbeat cycle into four variable-time segments which is an extension to previous work on split-cycle modulation using wing bias but allows the use of a constant flapping amplitude constraint for the wing kinematic. Finally, we developed an optimization framework to control the system for fast recovery while guaranteeing the stability. The results showed that the proposed control parameters are capable of creating symmetric and asymmetric motions between the two wings and, therefore can stabilize the hovering system with minimal actuation and flapping angle amplitude constraint. 
    more » « less