skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metastable grain boundaries: the roles of structural and chemical disorders in their energetics, non-equilibrium kinetic evolution, and mechanical behaviors
Abstract Complex environments in advanced manufacturing usually involve ultrafast laser or ion irradiation which leads to rapid heating and cooling and drives grain boundaries (GBs) to non-equilibrium states, featuring distinct energetics and kinetic behaviors compared to conventional equilibrium or near-equilibrium GBs. In this topical review, we provide an overview of both recent experimental and computational studies on metastable GBs, i.e. their energetics, kinetic behaviors, and mechanical properties. In contrast to GBs at thermodynamic equilibrium, the inherent structure energy of metastable GBs exhibits a spectrum instead of single value for a particular misorientation, due to the existence of microstructural and chemical disorder. The potential energy landscape governs the energetic and kinetic behaviors of metastable GBs, including the ageing/rejuvenating mechanism and activation barrier distributions. The unique energetics and structural disorder of metastable GBs lead to unique mechanical properties and tunability of interface-rich nanocrystalline materials. We also discuss that, in addition to structural disorder, chemical complexity in multi-components alloys could also drive the GBs away from their ground states and, subsequently, significantly impact on the GBs-mediated deformation. And under some extreme conditions such as irradiation, structural disorders and chemical complexity may simultaneously present at interfaces, further enriching of metastability of GBs and their physical and mechanical behaviors. Finally, we discuss the machine learning techniques, which have been increasingly employed to predict and understand the complex behaviors of metastable GBs in recent years. We highlight the potential of data-driven approaches to revolutionize the study of disorder systems by efficiently extracting the relationship between structural features and material properties. We hope this topical review paper could shed light and stimulate the development of new GBs engineering strategies that allow more flexibility and tunability for the design of nano-structured materials.  more » « less
Award ID(s):
1944879
PAR ID:
10577344
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing Ltd
Date Published:
Journal Name:
Journal of Physics: Condensed Matter
Volume:
36
Issue:
34
ISSN:
0953-8984
Page Range / eLocation ID:
343001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Amorphous ceramics are a unique class of materials with unusual properties and functionalities. While these materials are known to crystallize when subjected to thermal annealing, they have sometimes been observed to crystallize athermally when exposed to extreme irradiation environments. Because irradiation is almost universally understood to introduce disorder into materials, these observations of irradiation-induced ordering or crystallization are unusual and may partially explain the limited research into this phenomenon. However, the archival literature presents a growing body of evidence of these irradiation-induced amorphous-to-crystalline (a-to-c) phase transformations in ceramics. In this perspective, the summary and review of examples from the literature of irradiation-induced a-to-c transformations for various classifications of ceramics are provided. This work will highlight irradiation conditions and material parameters that appear most influential for activating a-to-c transformations, identify trends, examine possible mechanisms, and discuss the impact of a-to-c transformations on material properties. Finally, future research directions that will enable researchers to harness a-to-c transformations to tailor materials behaviors will be provided. 
    more » « less
  2. Inspired by the success of graphene, two-dimensional (2D) materials have been at the forefront of advanced (opto-)nanoelectronics and energy-related fields owing to their exotic properties like sizable bandgaps, Dirac fermions, quantum spin Hall states, topological edge states, and ballistic charge carrier transport, which hold promise for various electronic device applications. Emerging main group elemental 2D materials, beyond graphene, are of particular interest due to their unique structural characteristics, ease of synthetic exploration, and superior property tunability. In this review, we present recent advances in atomic-scale studies of elemental 2D materials with an emphasis on synthetic strategies and structural properties. We also discuss the challenges and perspectives regarding the integration of elemental 2D materials into various heterostructures. 
    more » « less
  3. This contribution provides a thorough examination of the structural characteristics of pyrochlore-type lanthanide titanates and zirconates Ln2Ti2O7 and Ln2Zr2O7, across various length scales. This paper also examines their processing, interesting physical properties (electrical, magnetic, and thermal characteristics), and responses to high pressure and ion irradiation. Brief sections on the elemental oxides' crystal chemistry, pertinent phase diagrams, and energetics of defect formation are also provided. Pyrochlore-type Ln2Ti2O7 and Ln2Zr2O7 stand out as truly multifunctional materials. Moreover, they have emerged as fascinating materials due to magnetic geometrical frustration, arising from the ordering of magnetic Ln3+ and non-magnetic Ti4+ (or Zr4+) cations into separate, interpenetrating lattices of corner-sharing tetrahedra. This results in a diverse array of exotic magnetic ground states, such as spin-ice (e.g., Dy2Ti2O7 or Ho2Ti2O7) or quantum spin ice (e.g., Tb2Ti2O7), observed at both low and room temperatures. They also exhibit varied electrical and electrochemical characteristics. Some members such as Gd2Zr2O7, function as fast ion conductors with a conductivity (σ) of ≈10−2 S·cm−1 at 800 °C and activation energy (Ea) ranging from 0.85 to 1.52 eV, depending on the degree of structural disorder. Others, such as Gd2TiMoO7, are mixed ionic-electronic conductors with σ ≈ 25 S·cm−1 at 1000 °C, making them promising candidate materials for applications in energy conversion and storage devices and oxygen separation membranes. Their exceptionally low thermal conductivity (e.g., κ ∼ 1.1–1.7 W·m−1·K−1 between 700 and 1200 °C for Ln2Zr2O7), close to the glass-like lower limit of highly disordered solids, positions them as valuable materials for thermal barrier coatings. They can also effectively accommodate actinides (e.g., Pu, Np, Cm, Am) in solid solutions and sustain prolonged exposure to radiation due to alpha-decay events, while preserving the integrity of the periodic atomic structure. Proposed as major components in actinide-bearing ceramics, they contribute to the long-term immobilization and disposal of long-lived waste radionuclides from nuclear programs. Some of these properties are displayed simultaneously, opening avenues for new applications. Despite the wealth of data available in the literature, this review highlights the need for a better understanding of order/disorder processes in pyrochlore-type materials and the influence of the structural length scale on their physical and chemical properties. Recent experimental evidence has revealed that pyrochlore short-range structure is far more complex than originally thought. Moreover, pyrochlore local structure is now believed to include short-range, lower symmetry, ordered domains, such as the orthorhombic weberite-type of structure. Notably, short- and long-range structures appear decoupled across different length scales and temperature regimes, and these differences persist even in well-ordered samples. We believe that the pyrochlore structure offers a unique opportunity for examining the interplay between chemical composition, defect chemistry, and properties. In Memoriam: Rodney C. Ewing, Fondly Remembered. 
    more » « less
  4. Abstract Mechanical metamaterials are architected manmade materials that allow for unique behaviors not observed in nature, making them promising candidates for a wide range of applications. Existing metamaterials lack tunability as their properties can only be changed to a limited extent after the fabrication. Herein, a new magneto‐mechanical metamaterial is presented that allows great tunability through a novel concept of deformation mode branching. The architecture of this new metamaterial employs an asymmetric joint design using hard‐magnetic soft active materials that permits two distinct actuation modes (bending and folding) under opposite‐direction magnetic fields. The subsequent application of mechanical compression leads to the deformation mode branching where the metamaterial architecture transforms into two distinctly different shapes, which exhibit very different deformations and enable great tunability in properties such as mechanical stiffness and acoustic bandgaps. Furthermore, this metamaterial design can be incorporated with magnetic shape memory polymers with global stiffness tunability, which also allows for the global shift of the acoustic behaviors. The combination of magnetic and mechanical actuations, as well as shape memory effects, impart wide tunable properties to a new paradigm of metamaterials. 
    more » « less
  5. Cerium oxide nanoparticles (CeNPs) are versatile materials with unique and unusual properties that vary depending on their surface chemistry, size, shape, coating, oxidation states, crystallinity, dopant, structural and surface defects. This review details advances made over the past twenty years in the development of CeNPs and ceria-based nanostructures, the structural determinants affecting their activity, and translation of these distinct features into applications. The two-oxidation states of nanosized CeNPs (Ce3+/Ce4+) coexisting at the nanoscale level, facilitate formation of oxygen vacancies and defect states which confer extremely high reactivity and oxygen buffering capacity, and the ability to act as catalysts for oxidation and reduction reactions. However, the method of synthesis, surface functionalization, surface coating and defects are important factors in determining their properties. This review highlights the key properties of CeNPs, their synthesis, interactions and reaction pathways, and provides examples of emerging applications. Due to their unique properties, CeNPs have become quintessential candidates for catalysis, chemical mechanical planarization (CMP), sensing, biomedical applications and environmental remediation, with tremendous potential to create novel products and translational innovations in a wide range of industries. This review highlights the timely relevance and the transformative potential of these materials in addressing societal challenges and driving technological advancements across these fields. 
    more » « less