Deep neural networks (DNNs) have showcased their remarkable precision in approximating smooth functions. However, they suffer from the spectral bias, wherein DNNs typically exhibit a tendency to prioritize the learning of lower-frequency components of a function, struggling to effectively capture its high-frequency features. This paper is to address this issue. Notice that a function having only low frequency components may be well-represented by a shallow neural network (SNN), a network having only a few layers. By observing that composition of low frequency functions can effectively approximate a high-frequency function, we propose to learn a function containing high-frequency components by composing several SNNs, each of which learns certain low-frequency information from the given data. We implement the proposed idea by exploiting the multi-grade deep learning (MGDL) model, a recently introduced model that trains a DNN incrementally, grade by grade, a current grade learning from the residue of the previous grade only an SNN (with trainable parameters) composed with the SNNs (with fixed parameters) trained in the preceding grades as features. We apply MGDL to synthetic, manifold, colored images, and MNIST datasets, all characterized by presence of high-frequency features. Our study reveals that MGDL excels at representing functions containing high-frequency information. Specifically, the neural networks learned in each grade adeptly capture some low-frequency information, allowing their compositions with SNNs learned in the previous grades effectively representing the high-frequency features. Our experimental results underscore the efficacy of MGDL in addressing the spectral bias inherent in DNNs. By leveraging MGDL, we offer insights into overcoming spectral bias limitation of DNNs, thereby enhancing the performance and applicability of deep learning models in tasks requiring the representation of high-frequency information. This study confirms that the proposed method offers a promising solution to address the spectral bias of DNNs. The code is available on GitHub: Addressing Spectral Bias via MGDL. 
                        more » 
                        « less   
                    
                            
                            Multi-grade Deep Learning
                        
                    
    
            Abstract Deep learning requires solving a nonconvex optimization problem of a large size to learn a deep neural network (DNN). The current deep learning model is of asingle-grade, that is, it trains a DNN end-to-end, by solving a single nonconvex optimization problem. When the layer number of the neural network is large, it is computationally challenging to carry out such a task efficiently. The complexity of the task comes from learning all weight matrices and bias vectors from one single nonconvex optimization problem of a large size. Inspired by the human education process which arranges learning in grades, we propose a multi-grade learning model: instead of solving one single optimization problem of a large size, we successively solve a number of optimization problems of small sizes, which are organized in grades, to learn a shallow neural network (a network having a few hidden layers) for each grade. Specifically, the current grade is to learn the leftover from the previous grade. In each of the grades, we learn a shallow neural network stacked on the top of the neural network, learned in the previous grades, whose parameters remain unchanged in training of the current and future grades. By dividing the task of learning a DDN into learning several shallow neural networks, one can alleviate the severity of the nonconvexity of the original optimization problem of a large size. When all grades of the learning are completed, the final neural network learned is astair-shapeneural network, which is thesuperpositionof networks learned from all grades. Such a model enables us to learn a DDN much more effectively and efficiently. Moreover, multi-grade learning naturally leads to adaptive learning. We prove that in the context of function approximation if the neural network generated by a new grade is nontrivial, the optimal error of a new grade is strictly reduced from the optimal error of the previous grade. Furthermore, we provide numerical examples which confirm that the proposed multi-grade model outperforms significantly the standard single-grade model and is much more robust to noise than the single-grade model. They include three proof-of-concept examples, classification on two benchmark data sets MNIST and Fashion MNIST with two noise rates, which is to find classifiers, functions of 784 dimensions, and as well as numerical solutions of the one-dimensional Helmholtz equation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2208386
- PAR ID:
- 10577482
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Communications on Applied Mathematics and Computation
- ISSN:
- 2096-6385
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Diffractive Neural Networks (DNNs) leverage the power of light to enhance computational performance in machine learning, offering a pathway to high-speed, low-energy, and large-scale neural information processing. However, most existing DNN architectures are optimized for single tasks and thus lack the flexibility required for the simultaneous execution of multiple tasks within a unified artificial intelligence platform. In this work, we utilize the polarization and wavelength degrees of freedom of light to achieve optical multi-task identification using the MNIST, FMNIST, and KMNIST datasets. Employing bilayer cascaded metasurfaces, we construct dual-channel DNNs capable of simultaneously classifying two tasks, using polarization and wavelength multiplexing schemes through a meta-atom library. Numerical evaluations demonstrate performance accuracies comparable to those of individually trained single-channel, single-task DNNs. Extending this approach to three-task parallel recognition reveals an expected performance decline yet maintains satisfactory classification accuracies of greater than 80 % for all tasks. We further introduce a novel end-to-end joint optimization framework to redesign the three-task classifier, demonstrating substantial improvements over the meta-atom library design and offering the potential for future multi-channel DNN designs. Our study could pave the way for the development of ultrathin, high-speed, and high-throughput optical neural computing systems.more » « less
- 
            Recently, ReRAM crossbar-based deep neural network (DNN) accelerator has been widely investigated. However, most prior works focus on single-task inference due to the high energy consumption of weight reprogramming and ReRAM cells’ low endurance issue. Adapting the ReRAM crossbar-based DNN accelerator for multiple tasks has not been fully explored. In this study, we propose XMA 2 , a novel crossbar-aware learning method with a 2-tier masking technique to efficiently adapt a DNN backbone model deployed in the ReRAM crossbar for new task learning. During the XMA 2 -based multi-task adaption (MTA), the tier-1 ReRAM crossbar-based processing-element- (PE-) wise mask is first learned to identify the most critical PEs to be reprogrammed for essential new features of the new task. Subsequently, the tier-2 crossbar column-wise mask is applied within the rest of the weight-frozen PEs to learn a hardware-friendly and column-wise scaling factor for new task learning without modifying the weight values. With such crossbar-aware design innovations, we could implement the required masking operation in an existing crossbar-based convolution engine with minimal hardware/memory overhead to adapt to a new task. The extensive experimental results show that compared with other state-of-the-art multiple-task adaption methods, XMA 2 achieves the highest accuracy on all popular multi-task learning datasets.more » « less
- 
            AI-powered applications often involve multiple deep neural network (DNN)-based prediction tasks to support application level functionalities. However, executing multi-DNNs can be challenging due to the high resource demands and computation costs that increase linearly with the number of DNNs. Multi-task learning (MTL) addresses this problem by designing a multi-task model that shares parameters across tasks based on a single backbone DNN. This paper explores an alternative approach called model fusion: rather than training a single multi-task model from scratch as MTL does, model fusion fuses multiple task-specific DNNs that are pre-trained separately and can have heterogeneous architectures into a single multi-task model. We materialize model fusion in a software framework called GMorph to accelerate multi- DNN inference while maintaining task accuracy. GMorph features three main technical contributions: graph mutations to fuse multi-DNNs into resource-efficient multi-task models, search-space sampling algorithms, and predictive filtering to reduce the high search costs. Our experiments show that GMorph can outperform MTL baselines and reduce the inference latency of multi-DNNs by 1.1-3X while meeting the target task accuracy.more » « less
- 
            AI-powered applications often involve multiple deep neural network (DNN)-based prediction tasks to support application level functionalities. However, executing multi-DNNs can be challenging due to the high resource demands and computation costs that increase linearly with the number of DNNs. Multi-task learning (MTL) addresses this problem by designing a multi-task model that shares parameters across tasks based on a single backbone DNN. This paper explores an alternative approach called model fusion: rather than training a single multi-task model from scratch as MTL does, model fusion fuses multiple task-specific DNNs that are pre-trained separately and can have heterogeneous architectures into a single multi-task model. We materialize model fusion in a software framework called GMorph to accelerate multi- DNN inference while maintaining task accuracy. GMorph features three main technical contributions: graph mutations to fuse multi-DNNs into resource-efficient multi-task models, search-space sampling algorithms, and predictive filtering to reduce the high search costs. Our experiments show that GMorph can outperform MTL baselines and reduce the inference latency of multi-DNNs by 1.1-3X while meeting the target task accuracy.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
