With the wide application of electronic health records (EHR) in healthcare facilities, health event prediction with deep learning has gained more and more attention. A common feature of EHR data used for deep-learning-based predictions is historical diagnoses. Existing work mainly regards a diagnosis as an independent disease and does not consider clinical relations among diseases in a visit. Many machine learning approaches assume disease representations are static in different visits of a patient. However, in real practice, multiple diseases that are frequently diagnosed at the same time reflect hidden patterns that are conducive to prognosis. Moreover, the development of a disease is not static since some diseases can emerge or disappear and show various symptoms in different visits of a patient. To effectively utilize this combinational disease information and explore the dynamics of diseases, we propose a novel context-aware learning framework using transition functions on dynamic disease graphs. Specifically, we construct a global disease co-occurrence graph with multiple node properties for disease combinations. We design dynamic subgraphs for each patient's visit to leverage global and local contexts. We further define three diagnosis roles in each visit based on the variation of node properties to model disease transition processes. Experimental results on two real-world EHR datasets show that the proposed model outperforms state of the art in predicting health events.
more »
« less
This content will become publicly available on August 1, 2025
Predictive Modeling with Temporal Graphical Representation on Electronic Health Records
Deep learning-based predictive models, leveraging Electronic Health Records (EHR), are receiving increasing attention in healthcare. An effective representation of a patient's EHR should hierarchically encompass both the temporal relationships between historical visits and medical events, and the inherent structural information within these elements. Existing patient representation methods can be roughly categorized into sequential representation and graphical representation. The sequential representation methods focus only on the temporal relationships among longitudinal visits. On the other hand, the graphical representation approaches, while adept at extracting the graph-structured relationships between various medical events, fall short in effectively integrate temporal information. To capture both types of information, we model a patient's EHR as a novel temporal heterogeneous graph. This graph includes historical visits nodes and medical events nodes. It propagates structured information from medical event nodes to visit nodes and utilizes time-aware visit nodes to capture changes in the patient's health status. Furthermore, we introduce a novel temporal graph transformer (TRANS) that integrates temporal edge features, global positional encoding, and local structural encoding into heterogeneous graph convolution, capturing both temporal and structural information. We validate the effectiveness of TRANS through extensive experiments on three real-world datasets. The results show that our proposed approach achieves state-of-the-art performance.
more »
« less
- Award ID(s):
- 2145625
- PAR ID:
- 10577630
- Publisher / Repository:
- International Joint Conferences on Artificial Intelligence Organization
- Date Published:
- ISBN:
- 978-1-956792-04-1
- Page Range / eLocation ID:
- 5763 to 5771
- Format(s):
- Medium: X
- Location:
- Jeju, South Korea
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Electronic health records (EHRs) have been heavily used in modern healthcare systems for recording patients' admission information to health facilities. Many data-driven approaches employ temporal features in EHR for predicting specific diseases, readmission times, and diagnoses of patients. However, most existing predictive models cannot fully utilize EHR data, due to an inherent lack of labels in supervised training for some temporal events. Moreover, it is hard for the existing methods to simultaneously provide generic and personalized interpretability. To address these challenges, we propose Sherbet, a self-supervised graph learning framework with hyperbolic embeddings for temporal health event prediction. We first propose a hyperbolic embedding method with information flow to pretrain medical code representations in a hierarchical structure. We incorporate these pretrained representations into a graph neural network (GNN) to detect disease complications and design a multilevel attention method to compute the contributions of particular diseases and admissions, thus enhancing personalized interpretability. We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data and exploit medical domain knowledge. We conduct a comprehensive set of experiments on widely used publicly available EHR datasets to verify the effectiveness of our model. Our results demonstrate the proposed model's strengths in both predictive tasks and interpretable abilities.more » « less
-
Hierarchical Tree-Based Sequential Event Prediction with Application in the Aviation Accident ReportSequential event prediction is a well-studied area and has been widely used in proactive management, recommender systems and healthcare. One major assumption of the existing sequential event prediction methods is that similar event sequence patterns in the historical record will repeat themselves, enabling us to predict future events. However, in reality, the assumption becomes less convincing when we are trying to predict rare or unique sequences. Furthermore, the representation of the event may be complex with hierarchical structures. In this paper, we aim to solve this issue by taking advantage of the multi-level or hierarchical representation of these rare events. We proposed to build a sequential Encoder-Decoder framework to predict the event sequences. More specifically, in the encoding layer, we built a hierarchical embedding representation for the events. In the decoding layer, we first predict the high-level events and the low-level events are generated according to a hierarchical graphical structure. We propose to link the encoding decoding layers with the temporal models for future event prediction. In this article, we further discussed applying the proposed model into the failure event prediction according to the aviation accident reports and have shown improved accuracy and model interpretability.more » « less
-
Accurate and explainable health event predictions are becoming crucial for healthcare providers to develop care plans for patients. The availability of electronic health records (EHR) has enabled machine learning advances in providing these predictions. However, many deep-learning-based methods are not satisfactory in solving several key challenges: 1) effectively utilizing disease domain knowledge; 2) collaboratively learning representations of patients and diseases; and 3) incorporating unstructured features. To address these issues, we propose a collaborative graph learning model to explore patient-disease interactions and medical domain knowledge. Our solution is able to capture structural features of both patients and diseases. The proposed model also utilizes unstructured text data by employing an attention manipulating strategy and then integrates attentive text features into a sequential learning process. We conduct extensive experiments on two important healthcare problems to show the competitive prediction performance of the proposed method compared with various state-of-the-art models. We also confirm the effectiveness of learned representations and model interpretability by a set of ablation and case studies.more » « less
-
Objective: Determine relationships between college students’ student loan presence and self-rated physical and mental health, major medical problems, mental health conditions, physical, dental, and mental health care visits and delays, and medication use and reductions. Participants: A total of 3,248 undergraduates at two regional public U.S. universities, surveyed Spring 2017. Methods: OLS and Logistic regression. Results: Loan presence was related to significantly worse self-rated physical and mental health and more major medical problems, but not to mental health conditions, or physical or mental health medication use. Respondents with loans were less likely to visit the dentist and more likely to report delaying medical, dental, and mental health care, and reducing medication use to save money. Conclusions: Results provide evidence of health and health care use divides among college students by loan presence.more » « less