skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Climate change and disturbance interact to alter landscape reflectivity (albedo) in boreal forests across a large latitudinal gradient in Siberia
Boreal forests form the largest terrestrial biome globally. Climate change is expected to induce large changes in vegetation of high latitude ecosystems, but there is considerable uncertainty about where, when, and how those changes will occur. Such vegetation change produces major feedback to the climate system, including by modifying albedo (reflectivity). Our study used the LANDIS-II forest landscape model to project forest dynamics on four representative landscapes (1 M ha) for 280 years into the future under a range of climate scenarios across a broad latitudinal gradient in Siberia. The model estimated the albedo of the vegetation and any snow on each landscape grid-cell through time to quantify surface albedo change in response to climate change and disturbances. We found that the shortening of the snow-covered season (winter) decreased annual average albedo dramatically, and climate change facilitated the invasion of tundra by boreal trees in the northernmost landscape (reducing albedo in all seasons). However, in other landscapes, albedo increased in summer due to disturbances (fire, wind, insects, harvest), eliminating or reducing leaf area in the short-term, and in the mid-term by promoting more reflective forest types deciduous, light conifers). This increased albedo was somewhat ephemeral and under climate change was overwhelmed by the shortening of the snow-covered season that greatly reduced albedo. We conclude that the primary driver of the overall reflectivity of boreal ecosystems is not vegetation, but rather, the length of the snow-covered season. Because climate change is likely to dramatically shorten the snow season, the concurrent reduction of albedo has the potential to act as a powerful positive feedback for climate change. Managing natural and anthropogenic disturbances may be the only tool with potential to mitigate the reduction of albedo by climate change in boreal ecosystems because management to encourage more reflective forest types has relatively small effect.  more » « less
Award ID(s):
2054713
PAR ID:
10577804
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Science of The Total Environment
Volume:
956
Issue:
C
ISSN:
0048-9697
Page Range / eLocation ID:
177043
Subject(s) / Keyword(s):
Eurasia Vegetation modeling LANDIS-II Permafrost Fire Insect pests
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Wildfires in the snow zone can brighten winter and spring landscapes by removing forest canopy, revealing underlying snow cover. Land surface albedo (LSA) alterations associated with transitioning from a canopied, snow‐hiding vegetation regime to a snow‐revealing landscape have impacts on the surface energy balance, with implications for climate and water supply. Forest fires are increasing in frequency, size, and elevation, but the change in LSA due to fire in the seasonal snow zone (SSZ) is poorly understood. This study addresses this knowledge gap for the Sierra Nevada, where recent climatic changes have contributed to droughts, earlier and more rapidly declining snowpacks, and worsening wildfire impacts. Remotely sensed snow fraction and LSA data from Moderate Resolution Imaging Spectrometer were used to assess the impact of wildfire on landscapes in the Sierra Nevada SSZ by comparing LSA in burn scars to unburned control areas and the historical average LSA, then quantifying the surface radiative forcing (RF) associated with change in LSA. Among high and moderate burn severity fires, winter LSA varied depending on snow cover, land characteristics, and burn severity, ranging from 0.12 in low‐snow fire scars to 0.47 in snow‐covered fire scars. This study adds to understanding of how landscapes respond to wildfires and the subsequent impacts on the surface energy balance. 
    more » « less
  2. Unprecedented modern rates of warming are expected to advance boreal forest into Arctic tundra, thereby reducing albedo, altering C-cycling (carbon-cycling), and changing global climate, yet the patterns and processes of this biome shift remain unclear. We describe the 20th century colonization of an Arctic basin by a widespread boreal conifer, Picea glauca, 40 km (kilometer) north of the nearest established treelines. The population approximately doubled each decade, with radial growth in main stems increasing exponentially and correlating positively to July air temperature. Juvenile height and adult lateral growth were 90% faster than at established treelines. This climate-forced range expansion, cast in the context of invasion theory, informs forecast models of vegetation change with the ecological conditions driving this biome shift. While surpassing temperature thresholds is a necessary condition for boreal forest advance, our empirical results indicate high soil nutrient availability, deep snow, and winter winds facilitate long-distance dispersal and promote recruitment. 
    more » « less
  3. Contemporary climate change in Alaska has resulted in amplified rates of press and pulse disturbances that drive ecosystem change with significant consequences for socio‐environmental systems. Despite the vulnerability of Arctic and boreal landscapes to change, little has been done to characterize landscape change and associated drivers across northern high‐latitude ecosystems. Here we characterize the historical sensitivity of Alaska's ecosystems to environmental change and anthropogenic disturbances using expert knowledge, remote sensing data, and spatiotemporal analyses and modeling. Time‐series analysis of moderate—and high‐resolution imagery was used to characterize land‐ and water‐surface dynamics across Alaska. Some 430,000 interpretations of ecological and geomorphological change were made using historical air photos and satellite imagery, and corroborate land‐surface greening, browning, and wetness/moisture trend parameters derived from peak‐growing season Landsat imagery acquired from 1984 to 2015. The time series of change metrics, together with climatic data and maps of landscape characteristics, were incorporated into a modeling framework for mapping and understanding of drivers of change throughout Alaska. According to our analysis, approximately 13% (~174,000 ± 8700 km2) of Alaska has experienced directional change in the last 32 years (±95% confidence intervals). At the ecoregions level, substantial increases in remotely sensed vegetation productivity were most pronounced in western and northern foothills of Alaska, which is explained by vegetation growth associated with increasing air temperatures. Significant browning trends were largely the result of recent wildfires in interior Alaska, but browning trends are also driven by increases in evaporative demand and surface‐water gains that have predominately occurred over warming permafrost landscapes. Increased rates of photosynthetic activity are associated with stabilization and recovery processes following wildfire, timber harvesting, insect damage, thermokarst, glacial retreat, and lake infilling and drainage events. Our results fill a critical gap in the understanding of historical and potential future trajectories of change in northern high‐latitude regions. 
    more » « less
  4. Abstract. The McMurdo Dry Valleys (MDVs) of Antarctica are a polar desertecosystem consisting of alpine glaciers, ice-covered lakes, streams, andexpanses of vegetation-free rocky soil. Because average summer temperaturesare close to 0 ∘C, theMDV ecosystem in general, and glacier melt dynamics in particular, are both closely linked to the energy balance. A slightincrease in incoming radiation or change in albedo can have large effects onthe timing and volume of meltwater. However, the seasonal evolution orspatial variability of albedo in the valleys has yet to fully characterized.In this study, we aim to understand the drivers of landscape albedo changewithin and across seasons. To do so, a box with a camera, GPS, andshortwave radiometer was hung from a helicopter that flew transects four to fivetimes a season along Taylor Valley. Measurements were repeated over threeseasons. These data were coupled with incoming radiation measured at sixmeteorological stations distributed along the valley to calculate thedistribution of albedo across individual glaciers, lakes, and soilsurfaces. We hypothesized that albedo would decrease throughout the australsummer with ablation of snow patches and increasing sediment exposure on theglacier and lake surfaces. However, small snow events (<6 mm waterequivalent) coupled with ice whitening caused spatial and temporalvariability of albedo across the entire landscape. Glaciers frequentlyfollowed a pattern of increasing albedo with increasing elevation, as well asincreasing albedo moving from east to west laterally across the ablationzone. We suggest that spatial patterns of albedo are a function of landscapemorphology trapping snow and sediment, longitudinal gradients in snowfallmagnitude, and wind-driven snow redistribution from east to west alongthe valley. We also compare our albedo measurements to the MODIS albedo productand found that overall the data have reasonable agreement. The mismatch inspatial scale between these two datasets results in variability, which isreduced after a snow event due to albedo following valley-scale gradients ofsnowfall magnitude. These findings highlight the importance of understandingthe spatial and temporal variability in albedo and the close coupling ofclimate and landscape response. This new understanding of landscape albedocan constrain landscape energy budgets, better predict meltwater generationon from MDV glaciers, and how these ecosystems will respond to changingclimate at the landscape scale. 
    more » « less
  5. Abstract Changes in land surface albedo can alter ecosystem energy balance and potentially influence climate. We examined the albedo of six bioenergy cropping systems in southwest Michigan USA: monocultures of energy sorghum (Sorghum bicolor), switchgrass (Panicum virgatumL.), and giant miscanthus (Miscanthus×giganteus), and polycultures of native grasses, early successional vegetation, and restored prairie. Direct field measurements of surface albedo (αs) from May 2018 through December 2020 at half‐hourly intervals in each system quantified the magnitudes and seasonal differences in albedo (∆α) and albedo‐induced radiative forcing (RF∆α). We used a nearby forest as a historical native cover type to estimate reference albedo and RF∆αchange upon original land use conversion, and a continuous no‐till maize (Zea mays L.) system as a contemporary reference to estimate change upon conversion from annual row crops. Annually,αsdiffered significantly (p < 0.05) among crops in the order: early successional (0.288 ± 0.012SE) >> miscanthus (0.271 ± 0.009) ≈ energy sorghum (0.270 ± 0.010) ≥ switchgrass (0.265 ± 0.009) ≈ restored prairie (0.264 ± 0.012) > native grasses (0.259 ± 0.010) > maize (0.247 ± 0.010). Reference forest had the lowest annualαs(0.134 ± 0.003). Albedo differences among crops during the growing season were also statistically significant, with growing seasonαsin perennial crops and energy sorghum on average ~20% higher (0.206 ± 0.003) than in no‐till maize (0.184 ± 0.002). Average non‐growing season (NGS)αs(0.370 ± 0.020) was much higher than growing seasonαs(0.203 ± 0.003) but these NGS differences were not significant. Overall, the original conversion of reference forest and maize landscapes to perennials provided a cooling effect on the local climate (RFαMAIZE: −3.83 ± 1.00 W m−2; RFαFOREST: −16.75 ± 3.01 W m−2). Significant differences among cropping systems suggest an additional management intervention for maximizing the positive climate benefit of bioenergy crops, with cellulosic crops on average ~9.1% more reflective than no‐till maize, which itself was about twice as reflective as the reference forest. 
    more » « less