skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 24, 2025

Title: The Gannon Storm: citizen science observations during the geomagnetic superstorm of 10 May 2024
Abstract. The 10 May 2024 geomagnetic storm, referred to as the Gannon Storm in this paper, was one of the most extreme to have occurred in over 20 years. In the era of smartphones and social media, millions of people from all around the world were alerted to the possibility of exceptional auroral displays. Hence, many people not only witnessed but also photographed the aurora during this event. These citizen science observations, although not from scientific instruments operated by observatories or research groups, can prove to be invaluable in obtaining data to characterise this extraordinary event. In particular, many observers saw and photographed the aurora at mid-latitudes, where ground-based instruments targeting auroral studies are sparse or absent. Moreover, the proximity of the event to the Northern Hemisphere summer solstice meant that many optical instruments were not in operation due to the lack of suitably dark conditions. We created an online survey and circulated it within networks of aurora photographers to collect observations of the aurora and of disruptions in technological systems that were experienced during this superstorm. We obtained 696 citizen science reports from over 30 countries, containing information such as the time and location of aurora sightings and the observed colours and auroral forms, as well as geolocalisation, network, and power disruptions noticed during the geomagnetic storm. We supplemented the obtained dataset with 186 auroral observations logged in the Skywarden catalogue (https://taivaanvahti.fi, last access: 19 December 2024) by citizen scientists. The main findings enabled by the data collected through these reports are that the aurora was widely seen from locations at geomagnetic latitudes ranging between 30 and 60°, with a few reports from even lower latitudes. This was significantly further equatorward than predicted by auroral oval models. The reported auroral emission colours, predominantly red and pink and intense enough to reach naked-eye visibility, suggest that the auroral electron precipitation contained large fluxes of low-energy (< 1 keV) particles. This study also reveals the limitations of citizen science data collection via a rudimentary online form. We discuss possible solutions to enable more detailed and quantitative studies of extreme geomagnetic events with citizen science in the future.  more » « less
Award ID(s):
2152365
PAR ID:
10577849
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Copernicus publications
Date Published:
Journal Name:
Geoscience Communication
Volume:
7
Issue:
4
ISSN:
2569-7110
Page Range / eLocation ID:
297 to 316
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. On 10 May 2024, a series of coronal mass ejections were detected at Earth followed by one of the most powerful geomagnetic storms since November 2003. Leveraging a multi–technique approach, this paper provides an account of the ground geomagnetic response during the 10–11 May 2024 extreme geomagnetic storm. More specifically, we show that at the mid-latitudes in the American sector, the storm produced extreme ground geomagnetic field perturbations between 01:50 UT and 02:30 UT on 11 May. Then using the Spherical Elementary Current System method, it is shown that the perturbations were associated with an intense westward propagating auroral westward electrojet current. Finally, with the aid of auroral all-sky images from the Missouri Skies Observatory, we demonstrate that an intense isolated substorm event with onset located between the Great Lakes region and the East Coast United States was the main source of the extreme westward electrojet current and the geomagnetic field perturbations at these typical mid-latitude locations. This study emphasizes the increased risk associated with expansion of the auroral oval into the mid-latitudes during extreme geomagnetic activity. 
    more » « less
  2. Yau, Andrew (Ed.)
    The continental United States is well instrumented with facilities for mid‐latitude upper atmosphere research that operate on a continuous basis. In addition, citizen scientists provide a wealth of information when unusual events occur. We combine ionospheric total electron content (TEC) data from distributed arrays of GNSS receivers, magnetometer chains, and auroral observations obtained by citizen scientists, to provide a detailed view of the intense auroral breakup and westward surge occurring at the peak of the 10–11 May 2024 extreme geomagnetic storm. Over a 20‐min interval, vertical TEC (vTEC) increased at unusually low latitude (∼45°) and rapidly expanded azimuthally across the continent. Individual receiver/satellite data sets indicate sharp bursts of greatly elevated of vTEC (∼50 TECu). Intense red aurora was co‐located with the leading edge of the equatorward and westward TEC enhancements, indicating that the large TEC enhancement was created by extremely intense low‐energy precipitation during the rapid substorm breakup. 
    more » « less
  3. Abstract Using NASA's Global‐scale Observations of the Limb and Disk (GOLD) imager, we report nightside ionospheric changes during the G5 super geomagnetic storm of 10 and 11 May 2024. Specifically, the nightside southern crest of the Equatorial Ionization Anomaly (EIA) was observed to merge with the aurora near the southern tip of South America. During the storm, the EIA southern crest was seen moving poleward as fast as 450 m/s. Furthermore, the aurora extended to mid‐latitudes reaching the southern tips of Africa and South America. The poleward shift of the equatorial ionospheric structure and equatorward motion of the aurora means there was no mid‐latitude ionosphere in this region. These observations offer unique insights into the ionospheric response to extreme geomagnetic disturbances, highlighting the complex interplay between solar activity and Earth's upper atmosphere. 
    more » « less
  4. Abstract Low‐cost instrumentation combined with volunteering and citizen science educational initiatives allowed the deployment of L‐band scintillation monitors to remote sense areas that are geomagnetically conjugated and located at low‐to‐mid latitudes in the American sector (Quebradillas in Puerto Rico and Santa Maria in Brazil). On 10 and 11 October, 2023, both monitors detected severe scintillations, some reaching dip latitudes beyond 26°N. The observations show conjugacy in the spatio‐temporal evolution of the scintillation‐causing irregularities. With the aid of collocated all‐sky airglow imager observations, it was shown that the observed scintillation event was caused by extreme equatorial plasma bubbles (EPBs) reaching geomagnetic apex altitudes exceeding 2,200 km. The observations suggest that geomagnetic conjugate large‐scale structures produced conditions for the development of intermediate scale (few 100 s of meters) in both hemispheres, leading to scintillation at conjugate locations. Finally, unlike previous reports, it is shown that the extreme EPBs‐driven scintillation reported here developed under geomagnetically quiet conditions. 
    more » « less
  5. Abstract The May 2024 super storm is one of the strongest geomagnetic storms during the past 20 years. One of the most remarkable ionospheric responses to this event over East and Southeast Asia is the complex ionospheric fluctuations following the storm commencement. The fluctuations created multiple oscillations of total electron content (TEC) embedded in the diurnal variation, with amplitudes up to 10 TECu. Along the same latitude, the fluctuations were nearly synchronized over a wide longitude span up to 35°. In the meridional direction, the fluctuations over low latitudes were the most significant and complex, which contained two main components, the poleward extending oscillations originated from the magnetic equator, and the equatorward propagating traveling ionospheric disturbances (TIDs) from high latitudes. The TIDs likely occurred around the globe. The storm‐time interplanetary electric fields penetrating into equatorial latitudes of the ionosphere and the auroral energy input were suggested to drive the poleward extending oscillations and the equatorward TIDs, respectively. 
    more » « less