skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Engineering disease analyte response in peptide self-assembly
A need to enhance the precision and specificity of therapeutic nanocarriers inspires the development of advanced nanomaterials capable of sensing and responding to disease-related cues. Self-assembled peptides offer a promising nanocarrier platform with versatile use to create precisely defined nanoscale materials. Disease-relevant cues can range from large biomolecules, such as enzymes, to ubiquitous small molecules with varying concentrations in healthy versus diseased states. Notably, pH changes (i.e., H+ concentration), redox species (e.g., H2O2), and glucose levels are significant spatial and/or temporal indicators of therapeutic needs. Self-assembled peptides respond to these cues by altering their solubility, modulating electrostatic interactions, or facilitating chemical transformations through dynamic or labile bonds. This review explores the design and construction of therapeutic nanocarriers using self-assembled peptides, focusing on how peptide sequence engineering and the inclusion of non-peptidic components can link the assembly state of these nanocarriers to the presence of disease-relevant small molecules.  more » « less
Award ID(s):
1944875
PAR ID:
10577907
Author(s) / Creator(s):
;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Journal of Materials Chemistry B
Volume:
12
Issue:
42
ISSN:
2050-750X
Page Range / eLocation ID:
10757 to 10769
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Nanotechnology platforms, such as nanoparticles, liposomes, dendrimers, and micelles have been studied extensively for various drug deliveries, to treat or prevent diseases by modulating physiological or pathological processes. The delivery drug molecules range from traditional small molecules to recently developed biologics, such as proteins, peptides, and nucleic acids. Among them, proteins have shown a series of advantages and potential in various therapeutic applications, such as introducing therapeutic proteins due to genetic defects, or used as nanocarriers for anticancer agents to decelerate tumor growth or control metastasis. This review discusses the existing nanoparticle delivery systems, introducing design strategies, advantages of using each system, and possible limitations. Moreover, we will examine the intracellular delivery of different protein therapeutics, such as antibodies, antigens, and gene editing proteins into the host cells to achieve anticancer effects and cancer vaccines. Finally, we explore the current applications of protein delivery in anticancer treatments. 
    more » « less
  2. Transition metal dysregulation is associated with a host of pathologies, many of which are therapeutically targeted using chelators and ionophores. Chelators and ionophores are used as therapeutic metal-binding compounds which impart biological effects by sequestering or trafficking endogenous metal ions in an effort to restore homeostasis. Many current therapies take inspiration or derive directly from small molecules and peptides found in plants. This review focuses on plant-derived small molecule and peptide chelators and ionophores that can affect metabolic disease states. Understanding the coordination chemistry, bioavailability, and bioactivity of such molecules provides the tools to further research applications of plant-based chelators and ionophores. 
    more » « less
  3. Abstract Self‐assembled peptides are an emerging family of biomaterials that show great promise for a range of biomedical and biotechnological applications. Introducing and tuning the pH‐responsiveness of the assembly is highly desirable for improving their biological activities. Inspired by proteins with internal ionizable residues, we report a simple but effective approach to constructing pH‐responsive peptide assembly containing unnatural ionic amino acids with an aliphatic tertiary amine side chain. Through a combined experimental and computational investigation, we demonstrate that these residues can be accommodated and stabilized within the internal hydrophobic compartment of the peptide assembly. The hydrophobic microenvironment shifts their pKasignificantly from a basic pH typically found for free amines to a more biologically relevant pH in the weakly acidic range. The pH‐induced ionization and ionization‐dependent self‐assembly and disassembly are thoroughly investigated and correlated with the biological activity of the assembly. This new approach has unique advantages in tuning the pH‐responsiveness of self‐assembled peptides across a large pH range in a complex biological environment. We anticipate the ionizable amino acids developed here can be widely applicable to the synthesis and self‐assembly of many amphiphilic peptides with endowed pH‐responsive properties to enhance their biological activities toward applications ranging from targeted therapeutic delivery to proton transport. 
    more » « less
  4. Abstract Gaseous signaling molecules such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have recently been recognized as essential signal mediators that regulate diverse physiological and pathological processes in the human body. With the evolution of gaseous signaling molecule biology, their therapeutic applications have attracted growing attention. One of the challenges in translational research of gaseous signaling molecules is the lack of efficient and safe delivery systems. To tackle this issue, researchers developed a library of gas donors, which are low molecular weight compounds that can release gaseous signaling molecules upon decomposition under physiological conditions. Despite the significant efforts to control gaseous signaling molecule release from gas donors, the therapeutic potential of gaseous signaling molecules cannot be fully explored due to their unfavorable pharmacokinetics and toxic side effects. Recently, the use of nanoparticle‐based gas donors, especially self‐assembled polymeric gas donors, have emerged as a promising approach. In this review, we describe the development of conventional small gas donors and the challenges in their therapeutic applications. We then illustrate the concepts and critical aspects for designing self‐assembled polymeric gas donors and discuss the advantages of this approach in gasotransmistter delivery. We also highlight recent efforts to develop the delivery systems for those molecules based on self‐assembled polymeric nanostructures. This article is categorized under:Therapeutic Approaches and Drug Discovery > Emerging Technologies 
    more » « less
  5. Abstract Here, we demonstrate the applicability of self‐assembling linear‐dendritic block copolymers (LDBCs) and their nanoaggregates possessing varied surfaces as therapeutic nanocarriers. These LDBCs are comprised of a hydrophobic, linear polyester chemically coupled to a hydrophilic dendron polyamidoamine (PAMAM)—the latter of which acts as the surface of the self‐assembled nanoaggregate in aqueous media. To better understand how surface charge density affects the overall operability of these nanomaterials, we modified the nanoaggregate surface to yield cationic (NH3+), neutral (OH), and anionic (COO) surfaces. The effect of these modifications on the physicochemical properties (i.e., size, morphology, and surface charge density), colloidal stability, and cellular uptake mechanism of the polymeric nanocarrier were investigated. This comparative study demonstrates the viability of nanoaggregates formed from PDLLA‐PAMAM LDBCs to serve as nanocarriers for applications in drug delivery. 
    more » « less