skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Programmable Line-by-Line Pulse Shaping with a Microresonator-Based Spectral Shaper
Award ID(s):
2034019
PAR ID:
10577917
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-9404-7
Page Range / eLocation ID:
1 to 2
Format(s):
Medium: X
Location:
Tokyo Bay, Japan
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We characterize Borel line graphs in terms of 10 forbidden induced subgraphs, namely the nine finite graphs from the classical result of Beineke together with a 10th infinite graph associated with the equivalence relation$$\mathbb {E}_0$$on the Cantor space. As a corollary, we prove a partial converse to the Feldman–Moore theorem, which allows us to characterize all locally countable Borel line graphs in terms of their Borel chromatic numbers. 
    more » « less
  2. Let E E be an elliptic curve over Q \mathbb {Q} with Mordell–Weil rank 2 2 and p p be an odd prime of good ordinary reduction. For every imaginary quadratic field K K satisfying the Heegner hypothesis, there is (subject to the Shafarevich–Tate conjecture) a line, i.e., a free Z p \mathbb {Z}_p -submodule of rank 1 1 , in E ( K ) ⊗<#comment/> Z p E(K)\otimes \mathbb {Z}_p given by universal norms coming from the Mordell–Weil groups of subfields of the anticyclotomic Z p \mathbb {Z}_p -extension of K K ; we call it theshadow line. When the twist of E E by K K has analytic rank 1 1 , the shadow line is conjectured to lie in E ( Q ) ⊗<#comment/> Z p E(\mathbb {Q})\otimes \mathbb {Z}_p ; we verify this computationally in all our examples. We study the distribution of shadow lines in E ( Q ) ⊗<#comment/> Z p E(\mathbb {Q})\otimes \mathbb {Z}_p as K K varies, framing conjectures based on the computations we have made. 
    more » « less