skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adsorption of Ag, Au, Cu, and Ni on MoS 2 : theory and experiment
Abstract Here, we present results of a computational and experimental study of adsorption of various metals on MoS2. In particular, we analyzed the binding mechanism of four metallic elements (Ag, Au, Cu, Ni) on MoS2. Among these elements, Ni exhibits the strongest binding and lowest mobility on the surface of MoS2. On the other hand, Au and Ag bond very weakly to the surface and have very high mobilities. Our calculations for Cu show that its bonding and surface mobility are between these two groups. Experimentally, Ni films exhibit a composition characterized by randomly oriented nanoscale clusters. This is consistent with the larger cohesive energy of Ni atoms as compared with their binding energy with MoS2, which is expected to result in 3D clusters. In contrast, Au and Ag tend to form atomically flat plateaued structures on MoS2, which is contrary to their larger cohesive energy as compared to their weak binding with MoS2. Cu displays a surface morphology somewhat similar to Ni, featuring larger nanoscale clusters. However, unlike Ni, in many cases Cu exhibits small plateaued surfaces on these clusters. This suggests that Cu likely has two competing mechanisms that cause it to span the behaviors seen in the Ni and Au/Ag film morphologies. These results indicate that calculations of the initial binding conditions could be useful for predicting film morphologies. In addition, out calculations show that the adsorption of adatoms with odd electron number like Ag, Au, and Cu results in 100% spin-polarization and integer magnetic moment of the system. Adsorption of Ni adatoms, with even electron number, does not induce a magnetic transition.  more » « less
Award ID(s):
2300639 2328889
PAR ID:
10577953
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP Science
Date Published:
Journal Name:
Journal of Physics: Condensed Matter
Volume:
37
Issue:
1
ISSN:
0953-8984
Page Range / eLocation ID:
015001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ability to directly probe the adsorption configurations of organic regioisomeric molecules, specifically nonplanar isomers, on well-defined substrates holds promise to revolutionize fields dependent on nanoscale processes, such as catalysis, surface science, nanotechnology and modern day electronic applications. Herein, the adsorption configurations and surface sensitive interactions of two nonplanar regioisomer, trans - and cis -tetrakispentafluorophenylporphodilactone ( trans - and cis -H 2 F 20 TPPDL), molecules on (100) surfaces of Ag, Cu and Au were studied and investigated using high resolution scanning tunneling microscopy (STM), combined with ultrahigh vacuum tip-enhanced Raman spectroscopy (UHV-TERS). Depending on molecule–substrate interactions, similar “phenyl-up” configurations were observed for these molecules on Ag(100) and Au(100), while a “phenyl-flat” configuration was discovered on a Cu(100) surface. With the help of surface selection rules of TERS, we explain the spectral discrepancies recorded on the Ag and Cu substrate. Furthermore, the intermolecular interactions were addressed using STM analysis on these surfaces after the configurations were determined by TERS. This study sheds light on the distinct configurations of regioisomeric porphodilactone systems (at interfaces) for near-infrared (NIR) photosensitizers and molecular electronics in the near future. 
    more » « less
  2. In this work, we introduce a novel approach for the selective assembly of heterometallic complexes by unprecedented coordination of coinage metal cations to strained single ruthenium–boron bonds on a surface of icosahedral boron clusters. M( i ) cations (M = Cu, Ag, and Au) insert into B–Ru bonds of the (BB)–carboryne complex of ruthenium with the formation of four-membered B–M–Ru–B metalacycles. Results of theoretical calculations suggest that bonding within these metalacycles can be best described as unusual three-center-two-electron B–M⋯Ru interactions that are isolobal to B–H⋯Ru borane coordination for M = Cu and Ag, or the pairs of two-center-two electron B–Au and Au–Ru interactions for M = Au. These transformations comprise the first synthetic route to exohedral coinage metal boryl complexes of icosahedral closo -{C 2 B 10 } clusters, which feature short Cu–B (2.029(2) Å) and Ag–B (2.182(3) Å) bonds and the shortest Au–B bond (2.027(2) Å) reported to date. The reported heterometallic complexes contain Cu( i ) and Au( i ) centers in uncharacteristic square-planar coordination environments. These findings pave the way to rational construction of a broader class of multimetallic architectures featuring M–B bonds. 
    more » « less
  3. H2 activation is fundamental in catalysis. Single-atom catalysts (SACs) can be highly selective hydrogenation catalysts due to their tunable geometric and electronic properties. In this work, H2 activation (adsorption, splitting, and diffusion) on the anatase TiO2-supported SAC has been modeled in detail. The stable configurations of 14 transition metals from 3d to 5d (Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Cd, Os, Ir, Pt, and Au) and Sn have been screened. We compared H and H2 adsorption and H2 heterolytic and homolytic splitting on SA/TiO2. H on the SAC in neutral, hydridic, and proton forms and the preferred H2 dissociation paths are revealed. We found that the metal adatoms strengthen the Brønsted acids via forming the SA-O bonds and promote the H adsorption on Ti sites via forming the Ti3+ sites. The electronic descriptor using the energy level of the frontier d orbital, referenced to vacuum, can predict the single H and H2 dissociative adsorption energies on the metal site. As the SA-Hδ- interaction is stronger than Ti-Hδ-, the activation barriers for heterolytic paths over SA-O sites are lower than over Ti-O sites. H2 adsorption is activated on Au, Ru, Rh, Pd, and Ir in a dihydrogen complex structure with an elongated H-H bond. Homolytic splitting over SA sites is favored thermodynamically and kinetically on Rh, Pd, Os, Ir, and Pt. In contrast, for the remaining SA/TiO2, H-H splitting at the SA-O is kinetically favored compared to the Ti-O sites, but the products are less thermodynamically favored. 
    more » « less
  4. Metal phosphides are promising catalysts for hydrocarbon transformations, but computational screening is complicated by their diverse structures and compositions. To disentangle structural from compositional contributions, here we explore the metal-rich M 2 P (M = Fe, Co, Ni, Cu, Mo, Ru, Rh, Pd, Ag, Pt) series in hexagonal and orthorhombic structures that are common to a subset of these materials, using supercell density functional theory (DFT). To understand the contribution of metal choice to utility for catalytic ethane dehydrogenation (EDH), we compute and compare the adsorption of key EDH intermediates across low-index surface terminations. These materials expose both metal and phosphide sites. Calculations show that binding energies at metal sites correlate with the bulk metals, with P incorporation either enhancing or suppressing binding. Phosphide sites compete with metal sites for adsorbates and tend to suppress overactivation by destabilizing highly dehydrogenated species engaging in C–H bond breaking. Results are generally insensitive to bulk structure and surface facet. Results suggest metal-rich Pd phosphides to have favorable adsorption characteristics for catalytic dehydrogenation, consistent with recent observations. 
    more » « less
  5. Over the last 80 years, chlorine (Cl) has been the primary promoter of the ethylene epoxidation reaction valued at ~40 billion USD per year, providing a ~25% selectivity increase over unpromoted silver (Ag) (~55%). Promoters such as cesium, rhenium, and molybdenum each add a few percent of selectivity enhancements to achieve 90% overall, but their codependence on Cl makes optimizing and understanding their function complex. We took a theory-guided, single-atom alloy approach to identify nickel (Ni) as a dopant in Ag that can facilitate selective oxidation by activating molecular oxygen (O2) without binding oxygen (O) too strongly. Surface science experiments confirmed the facile adsorption/desorption of O2on NiAg, as well as demonstrating that Ni serves to stabilize unselective nucleophilic oxygen. Supported Ag catalyst studies revealed that the addition of Ni in a 1:200 Ni to Ag atomic ratio provides a ~25% selectivity increase without the need for Cl co-flow and acts cooperatively with Cl, resulting in a further 10% initial increase in selectivity. 
    more » « less