Abstract Liquid metal (LM) exhibits a distinct combination of high electrical conductivity comparable to that of metals and exceptional deformability derived from its liquid state, thus it is considered a promising material for high-performance soft electronics. However, rapid patterning LM to achieve a sensory system with high sensitivity remains a challenge, mainly attributed to the poor rheological property and wettability. Here, we report a rheological modification strategy of LM and strain redistribution mechanics to simultaneously simplify the scalable manufacturing process and significantly enhance the sensitivity of LM sensors. By incorporating SiO2particles into LM, the modulus, yield stress, and viscosity of the LM-SiO2composite are drastically enhanced, enabling 3D printability on soft materials for stretchable electronics. The sensors based on printed LM-SiO2composite show excellent mechanical flexibility, robustness, strain, and pressure sensing performances. Such sensors are integrated onto different locations of the human body for wearable applications. Furthermore, by integrating onto a tactile glove, the synergistic effect of strain and pressure sensing can decode the clenching posture and hitting strength in boxing training. When assisted by a deep-learning algorithm, this tactile glove can achieve recognition of the technical execution of boxing punches, such as jab, swing, uppercut, and combination punches, with 90.5% accuracy. This integrated multifunctional sensory system can find wide applications in smart sport-training, intelligent soft robotics, and human-machine interfaces.
more »
« less
Healable, Recyclable, and Multifunctional Soft Electronics Based on Biopolymer Hydrogel and Patterned Liquid Metal
Abstract Recent years have witnessed the rapid development of sustainable materials. Along this line, developing biodegradable or recyclable soft electronics is challenging yet important due to their versatile applications in biomedical devices, soft robots, and wearables. Although some degradable bulk hydrogels are directly used as the soft electronics, the sensing performances are usually limited due to the absence of distributed conducting circuits. Here, sustainable hydrogel‐based soft electronics (HSE) are reported that integrate sensing elements and patterned liquid metal (LM) in the gelatin–alginate hybrid hydrogel. The biopolymer hydrogel is transparent, robust, resilient, and recyclable. The HSE is multifunctional; it can sense strain, temperature, heart rate (electrocardiogram), and pH. The strain sensing is sufficiently sensitive to detect a human pulse. In addition, the device serves as a model system for iontophoretic drug delivery by using patterned LM as the soft conductor and electrode. Noncontact detection of nearby objects is also achieved based on electrostatic‐field‐induced voltage. The LM and biopolymer hydrogel are healable, recyclable, and degradable, favoring sustainable applications and reconstruction of the device with new functions. Such HSE with multiple functions and favorable attributes should open opportunities in next‐generation electronic skins and hydrogel machines.
more »
« less
- Award ID(s):
- 2032409
- PAR ID:
- 10577983
- Publisher / Repository:
- Small
- Date Published:
- Journal Name:
- Small
- Volume:
- 18
- Issue:
- 23
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cutting-edge technologies of stretchable, skin-mountable, and wearable electronics have attracted tremendous attention recently due to their very wide applications and promising performances. One direction of particular interest is to investigate novel properties in stretchable electronics by exploring multifunctional materials. Here, we report an integrated strain sensing system that is highly stretchable, rehealable, fully recyclable, and reconfigurable. This system consists of dynamic covalent thermoset polyimine as the moldable substrate and encapsulation, eutectic liquid metal alloy as the strain sensing unit and interconnects, and off-the-shelf chip components for measuring and magnifying functions. The device can be attached on different parts of the human body for accurately monitoring joint motion and respiration. Such a strain sensing system provides a reliable, economical, and ecofriendly solution to wearable technologies, with wide applications in health care, prosthetics, robotics, and biomedical devices.more » « less
-
Abstract Liquid‐metal embedded elastomers (LMEEs) have been demonstrated to show a variety of excellent properties, including high toughness, dielectric constant, and thermal conductivity, with applications across soft electronics and robotics. However, within this scope of use cases, operation in extreme environments – such as high‐temperature conditions – may lead to material degradation. While prior works highlight the functionality of LMEEs, there is limited insight on the thermal stability of these soft materials and how the effects of liquid metal (LM) inclusions depend on temperature. Here, the effects on thermal stability, including mechanical and electrical properties, of LMEEs are introduced. Effects are characterized for both fluoroelastomer and other elastomer‐based composites at temperature exposures up to 325 °C, where it is shown that embedding LM can offer improvements in thermo‐mechanical stability. Compared to elastomer like silicone rubber that has been previously used for LMEEs, a fluoroelastomer matrix offers a higher dielectric constant and significant improvement in thermo‐mechanical stability without sacrificing room temperature properties, such as thermal conductivity and modulus. Fluoroelastomer‐LM composites offer a promising soft, multi‐functional material for high‐temperature applications, which is demonstrated here with a printed, soft heat sink and an endoscopic sensor capable of wireless sensing of high temperatures.more » « less
-
Abstract Electronic devices are ubiquitous in modern society, yet their poor recycling rates contribute to substantial economic losses and worsening environmental impacts from electronic waste (E‐waste) disposal. Here, recyclable and healable electronics are reported through a vitrimer‐liquid metal (LM) microdroplet composite. These electrically conductive, yet plastic‐like composites display mechanical qualities of rigid thermosets and recyclability through a dynamic covalent polymer network. The composite exhibits a high glass transition temperature, good solvent resistance, high electrical conductivity, and recyclability. The vitrimer synthesis proceeds without the need for a catalyst or a high curing temperature, which enables facile fabrication of the composite materials. The as‐synthesized vitrimer exhibits a fast relaxation time with reconfigurability and shape memory. The electrically conductive composite exhibits high electrical conductivity with LM volume loading as low as 5 vol.%. This enables the fabrication of fully vitrimer‐based circuit boards consisting of sensors and indicator LEDs integrated with LM‐vitrimer conductive wiring. Electrical self‐healing and thermally triggered material healing are further demonstrated with the composites. The vitrimer and LM‐composite provide a pathway toward fully recyclable, mechanically robust, and reconfigurable electronics, thus advancing the field of electronic materials.more » « less
-
This article presents a sensor for detecting the distribution of forces on a surface. The device with nine buttons consisted of an elastomer-based layer as a touch interface resting on a substrate of patterned metallized paper. The elastomer-based layer included a three-by-three array of deformable, hemispherical elements/reliefs, facing down toward an array of interdigitated capacitive sensing units on patterned metallized paper. Each hemispherical element is 20 mm in diameter and 8 mm in height. When a user applied pressure to the elastomer-based layer, the contact area between the hemispherical elements and the interdigitated capacitive sensing units increased with the deformation of the hemispherical elements. To enhance the sensitivity of the sensors, embedded particles of hydrogel in the elastomer-based layer increased the measured electrical responses. The measured capacitance increased because the effective dielectric permittivity of the hydrogel was greater than that of air. Electromechanical characterization verified that the hydrogel-filled elastomer was more sensitive to force at a low range of loads (23.4 pF/N) than elastomer alone without embedded hydrogel (3.4 pF/N), as the hydrogel reduced the effective elastic modulus of the composite material by a factor of seven. A simple demonstration suggests that the force-sensing array has the potential to contribute to wearable and soft robotic devices.more » « less
An official website of the United States government

