Recent advances have greatly increased the capabilities of large language models (LLMs), but our understanding of the models and their safety has not progressed as fast. In this paper we aim to understand LLMs deeper by studying their individual neurons. We build upon previous work showing large language models such as GPT-4 can be useful in explaining what each neuron in a language model does. Specifically, we analyze the effect of the prompt used to generate explanations and show that reformatting the explanation prompt in a more natural way can significantly improve neuron explanation quality and greatly reduce computational cost. We demonstrate the effects of our new prompts in three different ways, incorporating both automated and human evaluations.
more »
« less
This content will become publicly available on January 21, 2026
Blockchain for Large Language Model Security and Safety: A Holistic Survey
With the growing development and deployment of large language models (LLMs) in both industrial and academic fields, their security and safety concerns have become increasingly critical. However, recent studies indicate that LLMs face numerous vulnerabilities, including data poisoning, prompt injections, and unauthorized data exposure, which conventional methods have struggled to address fully. In parallel, blockchain technology, known for its data immutability and decentralized structure, offers a promising foundation for safeguarding LLMs. In this survey, we aim to comprehensively assess how to leverage blockchain technology to enhance LLMs' security and safety. Besides, we propose a new taxonomy of blockchain for large language models (BC4LLMs) to systematically categorize related works in this emerging field. Our analysis includes novel frameworks and definitions to delineate security and safety in the context of BC4LLMs, highlighting potential research directions and challenges at this intersection.Through this study, we aim to stimulate targeted advancements in blockchain-integrated LLM security.
more »
« less
- Award ID(s):
- 2349042
- PAR ID:
- 10578003
- Publisher / Repository:
- ACM SIGKDD Exploration
- Date Published:
- Journal Name:
- ACM SIGKDD Explorations Newsletter
- Volume:
- 26
- Issue:
- 2
- ISSN:
- 1931-0145
- Page Range / eLocation ID:
- 1 to 20
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Large Language Models (LLMs), such as ChatGPT and Bard, have revolutionized natural language understanding and generation. They possess deep language comprehension, human-like text generation capabilities, contextual awareness, and robust problem-solving skills, making them invaluable in various domains (e.g., search engines, customer support, translation). In the meantime, LLMs have also gained traction in the security community, revealing security vulnerabilities and showcasing their potential in security-related tasks. This paper explores the intersection of LLMs with security and privacy. Specifically, we investigate how LLMs positively impact security and privacy, potential risks and threats associated with their use, and inherent vulnerabilities within LLMs. Through a comprehensive literature review, the paper categorizes the papers into “The Good” (beneficial LLM applications), “The Bad” (offensive applications), and “The Ugly” (vulnerabilities of LLMs and their defenses). We have some interesting findings. For example, LLMs have proven to enhance code security (code vulnerability detection) and data privacy (data confidentiality protection), outperforming traditional methods. However, they can also be harnessed for various attacks (particularly user-level attacks) due to their human-like reasoning abilities. We have identified areas that require further research efforts. For example, Research on model and parameter extraction attacks is limited and often theoretical, hindered by LLM parameter scale and confidentiality. Safe instruction tuning, a recent development, requires more exploration. We hope that our work can shed light on the LLMs’ potential to both bolster and jeopardize cybersecurity.more » « less
-
Large language models (LLMs) have profoundly shaped various domains, including several types of network systems. With their powerful capabilities, LLMs have recently been proposed to enhance network security. However, the development of LLMs can introduce new risks due to their potential vulnerabilities and misuse. In this paper, we are motivated to review the dual role of LLMs in network security. Our goal is to explore how LLMs impact network security and ultimately shed light on how to evaluate LLMs from a network security perspective. We further discuss several future research directions regarding how to scientifically enable LLMs to assist with network security.more » « less
-
As large language models (LLMs) become increasingly integrated into real-world applications such as code generation and chatbot assistance, extensive efforts have been made to align LLM behavior with human values, including safety. Jailbreak attacks, aiming to provoke unintended and unsafe behaviors from LLMs, remain a significant LLM safety threat. In this paper, we aim to defend LLMs against jailbreak attacks by introducing SafeDecoding, a safety-aware decoding strategy for LLMs to generate helpful and harmless responses to user queries. Our insight in developing SafeDecoding is based on the observation that, even though probabilities of tokens representing harmful contents outweigh those representing harmless responses, safety disclaimers still appear among the top tokens after sorting tokens by probability in descending order. This allows us to mitigate jailbreak attacks by identifying safety disclaimers and amplifying their token probabilities, while simultaneously attenuating the probabilities of token sequences that are aligned with the objectives of jailbreak attacks. We perform extensive experiments on five LLMs using six state-of-the-art jailbreak attacks and four benchmark datasets. Our results show that SafeDecoding significantly reduces attack success rate and harmfulness of jailbreak attacks without compromising the helpfulness of responses to benign user queries while outperforming six defense methods. Our code is publicly available at: https://github.com/uw-nsl/SafeDecodingmore » « less
-
Retrieval Augmented Generation (RAG) has been a recent improvement in providing recent and accurate data to Large Language Models (LLMs). Although RAG has been successful in reducing hallucinations within LLMs, it remains susceptible to inaccurate and maliciously manipulated data. In this paper, we present Distributed-RAG (D-RAG), a novel blockchain-based framework designed to increase the integrity of the RAG system. D-RAG addresses the risks of malicious data by replacing the RAG’s traditionally centralized database with communities, each consisting of a database and a permissioned blockchain. The communities are based on different subjects, each containing experts in the field who verify data through a privacy-preserving consensus protocol before it is added to the database. A Retrieval Blockchain is also designed to communicate between the multiple communities. The miners on this Retrieval Blockchain are responsible for retrieving documents from the database for each query and ranking them using an LLM. These rankings are agreed upon, and the top ranked documents are provided to the LLM with the query to generate a response. We perform experiments on our proposed D-RAG framework, and our results show that our Retrieval Blockchain is scalable and our privacy-preserving consensus protocol maintains efficiency as community members increase. These results demonstrate that in a real-world application setting D-RAG is scalable in maintaining data integrity.more » « less
An official website of the United States government
