Abstract Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old‐growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi‐deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water‐stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.
more »
« less
Data from TropiRoot 1.0 database: tropical root characteristics across environments
TropiRoot 1.0 is a new tropical root database with root characteristics across environment gradients. It has data extracted from 104 new sources, resulting in more than 8000 rows of data (either species or community data). Most of the data in TropiRoot 1.0 includes root characteristics such as root biomass, morphology, root dynamics, mass fraction, architecture, anatomy, physiology and root chemistry. This initiative represents an approximately 30% increase in the currently available data for tropical roots in the Fine Root Ecology Database (FRED). TropiRoot 1.0, contains root characteristics from 25 different countries where seven are located in Asia, six in South America, five in Central America and the Caribbean, four in Africa, two in North America, and 1 in Oceania. Due to the volume of data, when ancillary data was available, including soil data, these data was either extracted and included in the database or their availability was recorded in an additional column. Multiple contributors checked the entries for outliers during the collation process to ensure data quality. For text-based observations, we examined all cells to ensure that their content relates to their specific categories. For numerical observations, we ordered each numerical value from least to greatest and plotted the values, checking apparent outliers against the data in their respective sources and correcting or removing incorrect or impossible values. Some data (soil and aboveground) have different columns for the same variable presented in different units, including originally published units, but root characteristics data had units converted to match the ones reported in FRED. By filling a gap from global databases, TropiRoot 1.0 expands our knowledge of otherwise so far underrepresented regions, and our ability to assess global trends. This advancement can be used to improve tropical forest representation in vegetation models.
more »
« less
- Award ID(s):
- 2332006
- PAR ID:
- 10578158
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Environmental System Science Data Infrastructure for a Virtual Ecosystem; Synthesis of existing tropical root data: How do natural, episodic disturbances alter tropical forest carbon cycles via changes in belowground dynamics?
- Date Published:
- Subject(s) / Keyword(s):
- 54 ENVIRONMENTAL SCIENCES Database Plants Root Traits Root Characteristics Tropical TropiRoot Functional Traits FRED ESS-DIVE File Level Metadata Reporting Format related identifiers root biomass root chemistry root morphology root anatomy root architecture root microbial associations root physiology root dynamics root system
- Format(s):
- Medium: X
- Location:
- This database provides root data across tropical ecosystems from different locations worldwide.
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Objectives:Fine roots significantly influence ecosystem-scale cycling of nutrients, carbon (C), and water, yet there is limited understanding of how fine root traits vary across and within tropical forests, some of Earth's most C-rich ecosystems. The biomass of fine roots can impact soil carbon storage, as root mortality is a primary source of new carbon to soils. A positive relationship has been observed between fine root biomass and soil carbon stocks in Panama (Cusack et al 2018). Beyond biomass, root characteristics like specific root length (SRL) could also influence soil carbon, as roots with higher SRL are less dense and thinner, potentially decomposing more easily or promoting soil aggregation. Understanding the effects of root morphology and tissue quality on soil carbon storage and with soil properties in general can improve predictions of landscape-scale carbon patterns. We aggregated new data of root biomass, morphology and nutrient content at 0-10 cm, 10-20 cm, 20-50 cm and 50-100 cm depth increments across four distinct lowland Panamanian forests and paired with already published datasets (Cusack et al 2018; Cusack and Turner 2020) of soil chemistry from the same sites and soil depths to explore relationship between soil carbon stocks and root characteristics.Datasets included:The datasets provided include .csv and .xlsx files for fine root characteristics and soil chemistry from four different forests across 0-10 cm, 10-20 cm, 20-50 cm, and 50-100 cm depth increments. Root characteristics include live fine root biomass, dead fine root biomass, coarse root biomass, specific root length, root diameter, root tissue density, specific root area, root %N, root %C, and root C/N ratio. Soil chemistry data includes total carbon (TC), dissolved organic carbon (DOC), bulk density, total phosphorus (TP), available phosphorus (AEM Pi), and various Mehlich-extractable elements such as aluminum, calcium, iron, potassium, manganese, phosphorus, and zinc. Nitrogen content measures include ammonium, nitrate, total dissolved nitrogen (TDN), dissolved inorganic nitrogen (DIN), and dissolved organic nitrogen (DON). The dataset also includes total exchangeable bases (TEB) and effective cation exchange capacity (ECEC) in both centimoles of charge per kilogram and micromoles of charge per gram. The soil chemistry data was obtained from Cusack et al (2018) and Cusack and Turner (2020) and paired with root characteristics data for the same depth increments and sites. Additionally, a .kml file is provided with coordinates for all 32 plots included in the study across four forests (n = 8 plots per site). Root data was averaged across these 8 plots per site and soil data was collected in one pit in each site. This dataset serves as baseline data before a throughfall exclusion experiment, Panama Rainforest Changes with Experimental Drying (PARCHED), was implemented. No special software is needed to open these files.more » « less
-
Fine roots are key to ecosystem-scale nutrient, carbon (C), and water cycling, yet our understanding of fine root trait variation within and among tropical forests, one of Earth’s most C-rich ecosystems, is limited. We characterized root biomass, morphology, nutrient content, and arbuscular mycorrhizal fungal (AMF) colonization to 1.2 m depths across four distinct lowland Panamanian forests, and related root characteristics to soil C stocks. We hypothesized that: (H1) Fine root characteristics vary consistently with depth across seasonal tropical forests, with deeper roots exhibiting more exploratory traits, such as for deep water acquisition; (H2) fine root characteristics vary among tropical forests mainly in surface soils, where resource availability also varies. We found consistent variation with depth across the four forests, including decreased root biomass, root tissue density, and AMF, and increased specific root length. Among the forests, there was variation in some fine root characteristics, including greater surface root biomass and lower SRL in the wettest forest, and smaller fine root diameter in the driest forest. We also found that root characteristics were related to total soil C stocks, which were positively related to root biomass and negatively related to specific root length. These results indicate emergent properties of root variation with depth across tropical forests, and show site-scale variation in surface root characteristics. Future work could explore the flexibility in root characteristics under changing conditions such as drought.more » « less
-
This dataset is a compilation of tropical root traits data in response to different global changes in tropical sites, considering 23.50N and S as latitudinal boundaries. The global changes considered are warming, drought, flooding, cyclones, nitrogen addition, CO2 fertilization, and fire. This dataset contains 266 root trait observations from 93 studies across 24 tropical countries. The full citation from where the data was taken from is provided in the dataset, as well as the global change, the ecosystem type, location, coordinates, the root traits measured, and the direction of their response after the global change. Additional information such as the duration of the experiment, the intensity of the global change, the soil layers from where the roots were collected, the root orders, and the type of experiment are also shown. We obtained this dataset by performing a systematic literature review on Web of Science using standardized keywords in English, Spanish, and Portuguese (Yaffar, Lugli et al. in press).more » « less
-
Abstract Insects are the most ubiquitous and diverse group of eukaryotic organisms on Earth, forming a crucial link in terrestrial and freshwater food webs. They have recently become the subject of headlines because of observations of dramatic declines in some places. Although there are hundreds of long‐term insect monitoring programs, a global database for long‐term data on insect assemblages has so far remained unavailable. In order to facilitate synthetic analyses of insect abundance changes, we compiled a database of long‐term (≥10 yr) studies of assemblages of insects (many also including arachnids) in the terrestrial and freshwater realms. We searched the scientific literature and public repositories for data on insect and arachnid monitoring using standardized protocols over a time span of 10 yr or longer, with at least two sampling events. We focused on studies that presented or allowed calculation of total community abundance or biomass. We extracted data from tables, figures, and appendices, and, for data sets that provided raw data, we standardized trapping effort over space and time when necessary. For each site, we extracted provenance details (such as country, state, and continent) as well as information on protection status, land use, and climatic details from publicly available GIS sources. In all, the database contains 1,668 plot‐level time series sourced from 165 studies with samples collected between 1925 and 2018. Sixteen data sets provided here were previously unpublished. Studies were separated into those collected in the terrestrial realm (103 studies with a total of 1,053 plots) and those collected in the freshwater realm (62 studies with 615 plots). Most studies were from Europe (48%) and North America (29%), with 34% of the plots located in protected areas. The median monitoring time span was 19 yr, with 12 sampling years. The number of individuals was reported in 129 studies, the total biomass was reported in 13 studies, and both abundance and biomass were reported in 23 studies. This data set is published under a CC‐BY license, requiring attribution of the data source. Please cite this paper if the data are used in publications, and respect the licenses of the original sources when using (part of) their data as detailed in Metadata S1: Table 1.more » « less