skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Co-option of immune and digestive cellular machinery to support photosymbiosis in amoebocytes of the upside-down jellyfish Cassiopea xamachana
The upside-down jellyfish, Cassiopea spp., host their algal symbionts inside a subset of amoebocytes, phagocytic cells that also play innate immune functions akin to macrophages from vertebrate animals. Amoebocyte precursors phagocytose algae from the jellyfish gut and store them inside intracellular compartments called symbiosomes. Subsequently, the precursors migrate to the mesoglea, differentiate into symbiotic amoebocytes, and roam throughout the jellyfish body where the algae remain photosynthetically active and supply the jellyfish host with a significant portion of their organic carbon needs. Here, we show that the amoebocyte symbiosome membrane contains V-H+-ATPase (VHA), the proton pump that acidifies phagosomes and lysosomes in all eukaryotes. Many symbiotic amoebocytes also abundantly express a carbonic anhydrase (CA), an enzyme that reversibly hydrates CO2 into H+ and HCO3−. Moreover, we found that the symbiosome lumen is pronouncedly acidic and that pharmacological inhibition of VHA or CA activities significantly decreases photosynthetic oxygen production in live jellyfish. These results point to a carbon concentrating mechanism (CCM) that co-opts VHA and CA from the phago-lysosomal machinery that ubiquitously mediates food digestion and innate immune responses. Analogous VHA-dependent CCMs have been previously described in reef-building corals, anemones, and giant clams; however, these other two cnidarians host their dinoflagellate algae inside gastrodermal cells -not in amoebocytes- and the clam hosts theirs within the gut lumen. Thus, our study identifies an example of convergent evolution at the cellular level that might broadly apply to invertebrate-microbe photosymbioses while also providing evolutionary links with intra- and extracellular food digestion and the immune system.  more » « less
Award ID(s):
2316391
PAR ID:
10578237
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
The Company of Biologists
Date Published:
Journal Name:
Journal of Experimental Biology
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The functional ecology of the gastrointestinal tract impacts host physiology, and its dysregulation is at the center of various diseases. The immune system, and specifically innate immunity, plays a fundamental role in modulating the interface of host and microbes in the gut. While humans remain a primary focus of research in this field, the use of diverse model systems help inform us of the fundamental principles legislating homeostasis in the gut. Invertebrates, which lack vertebrate-style adaptive immunity, can help define conserved features of innate immunity that shape the gut ecosystem. In this context, we previously proposed the use of a marine invertebrate, the protochordate Ciona robusta , as a novel tractable model system for studies of host-microbiome interactions. Significant progress, reviewed herein, has been made to fulfill that vision. We examine and review discoveries from Ciona that include roles for a secreted immune effector interacting with elements of the microbiota, as well as chitin-rich mucus lining the gut epithelium, the gut-associated microbiome of adults, and the establishment of a large catalog of cultured isolates with which juveniles can be colonized. Also discussed is the establishment of methods to rear the animals germ-free, an essential technology for dissecting the symbiotic interactions at play. As the foundation is now set to extend these studies into the future, broadening our comprehension of how host effectors shape the ecology of these microbial communities in ways that establish and maintain homeostasis will require full utilization of “multi-omics” approaches to merge computational sciences, modeling, and experimental biology in hypothesis-driven investigations. 
    more » « less
  2. null (Ed.)
    Abstract In cnidarian-Symbiodiniaceae symbioses, algal endosymbiont population control within the host is needed to sustain a symbiotic relationship. However, the molecular mechanisms that underlie such population control are unclear. Here we show that a cnidarian host uses nitrogen limitation as a primary mechanism to control endosymbiont populations. Nitrogen acquisition and assimilation transcripts become elevated in symbiotic Breviolum minutum algae as they reach high-densities within the sea anemone host Exaiptasia pallida . These same transcripts increase in free-living algae deprived of nitrogen. Symbiotic algae also have an elevated carbon-to-nitrogen ratio and shift metabolism towards scavenging nitrogen from purines relative to free-living algae. Exaiptasia glutamine synthetase and glutamate synthase transcripts concomitantly increase with the algal endosymbiont population, suggesting an increased ability of the host to assimilate ammonium. These results suggest algal growth and replication in hospite is controlled by access to nitrogen, which becomes limiting for the algae as their population within the host increases. 
    more » « less
  3. The animal foregut is the first tissue to encounter ingested food, bacteria, and viruses. We characterized the adult Drosophila foregut using transcriptomics to better understand how it triages consumed items for digestion or immune response and manages resources. Cell types were assigned and validated using GFP-tagged and Gal4 reporter lines. Foregut-associated neuroendocrine cells play a major integrative role by coordinating gut activity with nutrition, the microbiome, and circadian cycles; some express clock genes. Multiple epithelial cell types comprise the proventriculus, the central foregut organ that secretes the peritrophic matrix (PM) lining the gut. Analyzing cell types synthesizing individual PM layers revealed abundant mucin production close to enterocytes, similar to the mammalian intestinal mucosa. The esophagus and salivary gland express secreted proteins likely to line the esophageal surface, some of which may generate a foregut commensal niche housing specific gut microbiome species. Overall, our results imply that the foregut coordinates dietary sensing, hormonal regulation, and immunity in a manner that has been conserved during animal evolution. 
    more » « less
  4. Unlike animals, plants do not have specialized immune cells and lack an adaptive immune system. Instead, plant cells rely on their unique innate immune system to defend against pathogens and coordinate beneficial interactions with commensal and symbiotic microbes. One of the major convergent points for plant immune signaling is the nucleus, where transcriptome reprogramming is initiated to orchestrate defense responses. Mechanisms that regulate selective transport of nuclear signaling cargo and chromatin activity at the nuclear boundary play a pivotal role in immune activation. This review summarizes the current knowledge of how nuclear membrane-associated core protein and protein complexes, including the nuclear pore complex, nuclear transport receptors, and the nucleoskeleton participate in plant innate immune activation and pathogen resistance. We also discuss the role of their functional counterparts in regulating innate immunity in animals and highlight potential common mechanisms that contribute to nuclear membrane-centered immune regulation in higher eukaryotes. 
    more » « less
  5. Mutualistic symbioses between cnidarians and photosynthetic algae are modulated by complex interactions between host immunity and environmental conditions. Here, we investigate how symbiosis interacts with food limitation to influence gene expression and stress response programming in the sea anemoneExaiptasia pallida(Aiptasia). Transcriptomic responses to starvation were similar between symbiotic and aposymbiotic Aiptasia; however, aposymbiotic anemone responses were stronger. Starved Aiptasia of both symbiotic states exhibited increased protein levels of immune-related transcription factor NF-κB, its associated gene pathways, and putative target genes. However, this starvation-induced increase in NF-κB correlated with increased immunity only in symbiotic anemones. Furthermore, starvation had opposite effects on Aiptasia susceptibility to pathogen and oxidative stress challenges, suggesting distinct energetic priorities under food scarce conditions. Finally, when we compared starvation responses in Aiptasia to those of a facultative coral and non-symbiotic anemone, ‘defence’ responses were similarly regulated in Aiptasia and the facultative coral, but not in the non-symbiotic anemone. This pattern suggests that capacity for symbiosis influences immune responses in cnidarians. In summary, expression of certain immune pathways—including NF-κB—does not necessarily predict susceptibility to pathogens, highlighting the complexities of cnidarian immunity and the influence of symbiosis under varying energetic demands. 
    more » « less