This paper presents a theoretical model examining the interaction between a fibrous network and viscous fluid flow driven by an oscillating boundary. The aim is to understand how oscillating impacts are transmitted from the skull, through the arachnoid trabeculae network filled with cerebrospinal fluid, as observed in shaken baby syndrome. The model uses an effective medium approach to determine the fluid velocity field while each fiber is treated as a soft string undergoing deformation. Results indicate that the frequency of oscillation, fiber stiffness, and porous structure resistance significantly influence the oscillating shearing flow, as indicated by the Womersley (Wo), Brinkman (α), and Bingham (Bm) numbers. Application of the model to shaken baby syndrome suggests that oscillations in the cerebrospinal fluid and arachnoid trabeculae can significantly surpass those on the skull, leading to intense shear stress penetration to the brain. This model is the first study to integrate the dynamic response of string-like fibrous networks in fluid flows with oscillating boundaries and offers a quantitative framework for predicting the transmission of shearing forces from the skull to the brain matter.
more »
« less
This content will become publicly available on December 1, 2025
Modeling of the brain movement and cerebrospinal fluid flow within porous subarachnoid space under translational impacts
Traumatic brain injury remains a significant global health concern, requiring advanced understanding and mitigation strategies. In current brain concussion research, there is a significant knowledge gap: the critical role of transient cerebrospinal fluid (CSF) flow in the porous subarachnoid space (SAS) has long been overlooked. To address this limitation, we are developing a simplified mathematical model to investigate the CSF pressurization in the porous arachnoid trabeculae and the resulting motion of brain matter when the head is exposed to a translational impact. The model simplifies the head into an inner solid object (brain) and an outer rigid shell (skull) with a thin, porous fluid gap (SAS). The CSF flow in the impact side (coup region) and the opposite side (contrecoup region) is modeled as porous squeezing and expanding flows, respectively. The flow through the side regions, which connect these regions, is governed by Darcy's law. We found that the porous arachnoid trabeculae network significantly dampens brain motion and reduces pressure variations within the SAS compared to a SAS without the porous arachnoid trabeculae (AT). This effect is particularly pronounced under high-frequency, periodic acceleration impacts, thereby lowering the risk of injury. The dampening effect can be attributed to the low permeability of the AT, which increases resistance to fluid movement and stabilizes the fluid and pressure responses within the SAS, thereby reducing extreme pressure fluctuations and brain displacement under impact. This work provides a foundational understanding of CSF flow dynamics, paving the way for innovative approaches to brain injury prevention and management.
more »
« less
- Award ID(s):
- 2322067
- PAR ID:
- 10578286
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Physics of Fluids
- Volume:
- 36
- Issue:
- 12
- ISSN:
- 1070-6631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The brain lacks a conventional lymphatic system to remove metabolic waste. It has been proposed that directional fluid movement through the arteriolar paravascular space (PVS) promotes metabolite clearance. We performed simulations to examine if arteriolar pulsations and dilations can drive directional CSF flow in the PVS and found that arteriolar wall movements do not drive directional CSF flow. We propose an alternative method of metabolite clearance from the PVS, namely fluid exchange between the PVS and the subarachnoid space (SAS). In simulations with compliant brain tissue, arteriolar pulsations did not drive appreciable fluid exchange between the PVS and the SAS. However, when the arteriole dilated, as seen during functional hyperemia, there was a marked exchange of fluid. Simulations suggest that functional hyperemia may serve to increase metabolite clearance from the PVS. We measured blood vessels and brain tissue displacement simultaneously in awake, head-fixed mice using two-photon microscopy. These measurements showed that brain deforms in response to pressure changes in PVS, consistent with our simulations. Our results show that the deformability of the brain tissue needs to be accounted for when studying fluid flow and metabolite transport.more » « less
-
Abstract Traumatic brain injury (TBI) is a common injury modality affecting a diverse patient population. Axonal injury occurs when the brain experiences excessive deformation as a result of head impact. Previous studies have shown that the arachnoid trabeculae (AT) in the subarachnoid space significantly influence the magnitude and distribution of brain deformation during impact. However, the quantity and spatial distribution of cranial AT in humans is unknown. Quantification of these microstructural features will improve understanding of force transfer during TBI, and may be a valuable dataset for microneurosurgical procedures. In this study, we quantify the spatial distribution of cranial AT in seven post‐mortem human subjects. Optical coherence tomography (OCT) was used to conduct in situ imaging of AT microstructure across the surface of the human brain. OCT images were segmented to quantify the relative amounts of trabecular structures through a volume fraction (VF) measurement. The average VF for each brain ranged from 22.0% to 29.2%. Across all brains, there was a positive spatial correlation, with VF significantly greater by 12% near the superior aspect of the brain (p < .005), and significantly greater by 5%−10% in the frontal lobes (p < .005). These findings suggest that the distribution of AT between the brain and skull is heterogeneous, region‐dependent, and likely contributes to brain deformation patterns. This study is the first to image and quantify human AT across the cerebrum and identify region‐dependencies. Incorporation of this spatial heterogeneity may improve the accuracy of computational models of human TBI and enhance understanding of brain dynamics.more » « less
-
null (Ed.)Abstract Background The pia arachnoid complex (PAC) is a cerebrospinal fluid-filled tissue conglomerate that surrounds the brain and spinal cord. Pia mater adheres directly to the surface of the brain while the arachnoid mater adheres to the deep surface of the dura mater. Collagen fibers, known as subarachnoid trabeculae (SAT) fibers, and microvascular structure lie intermediately to the pia and arachnoid meninges. Due to its structural role, alterations to the biomechanical properties of the PAC may change surface stress loading in traumatic brain injury (TBI) caused by sub-concussive hits. The aim of this study was to quantify the mechanical and morphological properties of ovine PAC. Methods Ovine brain samples (n = 10) were removed from the skull and tissue was harvested within 30 min post-mortem. To access the PAC, ovine skulls were split medially from the occipital region down the nasal bone on the superior and inferior aspects of the skull. A template was used to remove arachnoid samples from the left and right sides of the frontal and occipital regions of the brain. 10 ex-vivo samples were tested with uniaxial tension at 2 mm s −1 , average strain rate of 0.59 s −1 , until failure at < 5 h post extraction. The force and displacement data were acquired at 100 Hz. PAC tissue collagen fiber microstructure was characterized using second-harmonic generation (SHG) imaging on a subset of n = 4 stained tissue samples. To differentiate transverse blood vessels from SAT by visualization of cell nuclei and endothelial cells, samples were stained with DAPI and anti-von Willebrand Factor, respectively. The Mooney-Rivlin model for average stress–strain curve fit was used to model PAC material properties. Results The elastic modulus, ultimate stress, and ultimate strain were found to be 7.7 ± 3.0, 2.7 ± 0.76 MPa, and 0.60 ± 0.13, respectively. No statistical significance was found across brain dissection locations in terms of biomechanical properties. SHG images were post-processed to obtain average SAT fiber intersection density, concentration, porosity, tortuosity, segment length, orientation, radial counts, and diameter as 0.23, 26.14, 73.86%, 1.07 ± 0.28, 17.33 ± 15.25 µm, 84.66 ± 49.18°, 8.15%, 3.46 ± 1.62 µm, respectively. Conclusion For the sizes, strain, and strain rates tested, our results suggest that ovine PAC mechanical behavior is isotropic, and that the Mooney-Rivlin model is an appropriate curve-fitting constitutive equation for obtaining material parameters of PAC tissues.more » « less
-
null (Ed.)Computational simulations of the biofluid flow in the ventricles in the brain are performed using computational fluid dynamics method. The head movements considered are head nodding motions. The cerebrospinal fluid flow is modeled as a Newtonian fluid with properties at the core body temperature. The motions of the brain are associated with two head motions. One is the normal nodding that is customarily signaling agreement and the second represents a hypnogogic jerk. The results of the simulations show that the cerebrospinal fluid flows in the brain ventricle are moderately affected by the light nodding, but the effects are more significant during the hypnagogic jerk motion, where mixing of the cerebrospinal fluid is distinctly enhanced. The outcomes illustrate that the head motions are significant drivers of ventricular cerebrospinal fluid flow simulated.more » « less
An official website of the United States government
