Three new organotin( iv ) carboxylate compounds were synthesized and structurally characterized by elemental analysis and FT-IR and multinuclear NMR ( 1 H, 13 C, 119 Sn) spectroscopy. Single X-ray crystallography reveals that compound C2 has a monoclinic crystal system with space group P 2 1 / c having distorted bipyramidal geometry defined by C 3 SnO 2 . The synthesized compounds were screened for drug-DNA interactions via UV-Vis spectroscopy and cyclic voltammetry showing good activity with high binding constants. Theoretical investigations also support the reactivity of the compounds as depicted from natural bond orbital (NBO) analysis using Gaussian 09. Synthesized compounds were initially evaluated on two cancer (HeLa and MCF-7) cell lines and cytotoxicity to normal cells was evaluated using a non-cancerous (BHK-21) cell line. All the compounds were found to be active, with IC 50 values less than that of the standard drug i.e. cisplatin. The cytotoxic effect of the most potent compound C2 was confirmed by LDH cytotoxicity assay and fluorescence imaging after PI staining. Apoptotic features in compound C2 treated cancer cells were visualized after DAPI staining while regulation of apoptosis was observed by reactive oxygen species generation, binding of C2 with DNA, a change in mitochondrial membrane potential and expression of activated caspase-9 and caspase-3 in cancer cells. Results are indicative of activation of the intrinsic pathway of apoptosis in C2 treated cancer cells. 
                        more » 
                        « less   
                    This content will become publicly available on January 8, 2026
                            
                            Elucidating the High Affinity Copper(II) Complexation by the Iron Chelator Deferasirox Provides Therapeutic and Toxicity Insight
                        
                    
    
            Deferasirox (Def), an orally administered iron‐chelating drug, has drawn significant interest in repurposing for anticancer application due to the elevated Fe demand by cancer cells. But there are also concerns about its severe off target health effects. Herein Cu(II) binding is studied as a potential off target interaction. The aqueous solution stability and speciation of the ternary complex Cu(Def)(pyridine) was studied by UV‐Vis and EPR spectroscopy, ESI‐mass spectrometry, and cyclic voltammetry under physiologically relevant conditions. The complex is observed to be a redox active, mononuclear Cu(II) complex in square planar geometry. UV‐Vis spectroscopy demonstrates that at pH 7.4 the complex is quite stable (ϵ337nm =10,820 M^−1cm^−1) with a log K=16.65±0.1. Cu scavenging from the Cu transporters ceruloplasmin and albumin was also studied. Def does not inhibit ceruloplasmin activity but forms a ternary Cu(II) complex at the bovine serum albumin ATCUN site. Cu(Def)(py) displays potent but nonselective cytotoxicity against A549 cancer and MRC‐5 noncancer lung cells but the potency of the ternary protein complex was more moderate. This work elucidates potential Def toxicity from Cu complexation in the body but also cytotoxic synergy between the metal and chelator that informs on new drug design directions. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10578636
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- ChemMedChem
- ISSN:
- 1860-7179
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Quercetin, one of the major natural flavonoids, has demonstrated great pharmacological potential as an antioxidant and in overcoming drug resistance. However, its low aqueous solubility and poor stability limit its potential applications. Previous studies suggest that the formation of quercetin-metal complexes could increase quercetin stability and biological activity. In this paper, we systematically investigated the formation of quercetin-iron complex nanoparticles by varying the ligand-to-metal ratios with the goal of increasing the aqueous solubility and stability of quercetin. It was found that quercetin-iron complex nanoparticles could be reproducibly synthesized with several ligand-to-iron ratios at room temperature. The UV-Vis spectra of the nanoparticles indicated that nanoparticle formation greatly increased the stability and solubility of quercetin. Compared to free quercetin, the quercetin-iron complex nanoparticles exhibited enhanced antioxidant activities and elongated effects. Our preliminary cellular evaluation suggests that these nanoparticles had minimal cytotoxicity and could effectively block the efflux pump of cells, indicating their potential for cancer treatment.more » « less
- 
            The reaction of 2-(1H-pyrrol-1-yl)ethanol with 3-hydroxyflavone in the presence of copper(II) bromide yielded a dimeric copper(II) complex, [μ-O-(κ2-O,O-flav)(κ2-N,O-2PEO)Cu]2 (1) (flav = 3-hydroxyflavonolate; 2PEO = 2-(1H-pyrrol-1-yl)ethanolate) with both the flav and 2PEO ligands bound to the copper(II) atom in a κ2-bonding mode. The dimer is held electrostatically by bridging oxygen atoms between two copper atoms. Complex 1 was characterized by single-crystal X-ray diffraction, infrared, and UV-Vis spectroscopy, elemental analysis, and melting point determination. The complex crystallizes in the monoclinic space group P21/n (14) with cell values of a = 11.85340(10) Å, b = 8.51480(10) Å, c = 23.8453(2) Å; β = 99.3920(10)°.more » « less
- 
            The molecular tetravalent oxidation state for praseodymium is observed in solution via oxidation of the anionic trivalent precursor [K][Pr 3+ (NP(1,2-bis- t Bu-diamidoethane)(NEt 2 )) 4 ] (1-Pr(NP*)) with AgI at −35 °C. The Pr 4+ complex is characterized in solution via cyclic voltammetry, UV-vis-NIR electronic absorption spectroscopy, and EPR spectroscopy. Electrochemical analyses of [K][Ln 3+ (NP(1,2-bis- t Bu-diamidoethane)(NEt 2 )) 4 ] (Ln = Nd and Dy) by cyclic voltammetry are reported and, in conjunction with theoretical modeling of electronic structure and oxidation potential, are indicative of principal ligand oxidations in contrast to the metal-centered oxidation observed for 1-Pr(NP*). The identification of a tetravalent praseodymium complex in in situ UV-vis and EPR experiments is further validated by theoretical modeling of the redox chemistry and the UV-vis spectrum. The latter study was performed by extended multistate pair-density functional theory (XMS-PDFT) and implicates a multiconfigurational ground state for the tetravalent praseodymium complex.more » « less
- 
            null (Ed.)Abstract In the search for novel broad-spectrum therapeutics to fight chronic infections, inflammation, and cancer, host defense peptides (HDPs) have garnered increasing interest. Characterizing their biologically-active conformations and minimum motifs for function represents a requisite step to developing them into efficacious and safe therapeutics. Here, we demonstrate that metallating HDPs with Cu 2+ is an effective chemical strategy to improve their cytotoxicity on cancer cells. Mechanistically, we find that prepared as Cu 2+ -complexes, the peptides not only physically but also chemically damage lipid membranes. Our testing ground features piscidins 1 and 3 (P1/3), two amphipathic, histidine-rich, membrane-interacting, and cell-penetrating HDPs that are α-helical bound to membranes. To investigate their membrane location, permeabilization effects, and lipid-oxidation capability, we employ neutron reflectometry, impedance spectroscopy, neutron diffraction, and UV spectroscopy. While P1-apo is more potent than P3-apo, metallation boosts their cytotoxicities by up to two- and seven-fold, respectively. Remarkably, P3-Cu 2+ is particularly effective at inserting in bilayers, causing water crevices in the hydrocarbon region and placing Cu 2+ near the double bonds of the acyl chains, as needed to oxidize them. This study points at a new paradigm where complexing HDPs with Cu 2+ to expand their mechanistic reach could be explored to design more potent peptide-based anticancer therapeutics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
