skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 26, 2025

Title: Programmable Crowding and Tunable Phases in a Binary Mixture of Colloidal Particles under Light-Driven Thermal Convection
We employ photothermally driven self-assembly of colloidal particles to design microscopic structures with programmable size and tunable order. The experimental system is based on a binary mixture of “plasmonic heater” gold nanoparticles and “assembly building block” microparticles. Photothermal heating of the gold nanoparticles under visible light causes a natural convection flow that efficiently assembles the microscale building block particles (diameter 1–10 μm) into a monolayer. We identify the onset of active Brownian motion of colloidal particles under this convective flow by varying the conditions of light intensity, gold nanoparticle concentration, and sample height. We realize a crowded assembly of microparticles around the center of illumination and show that the size of the particle crowd can be programmed using patterned light illumination. In a binary mixture of gold nanoparticles and polystyrene microparticles, we demonstrate the formation of rapid and large-scale crystalline monolayers, covering an area of 0.88 mm2 within 10 min. We find that the structural order of the assembly can be tuned by varying the surface charge of the nanoparticles and the size of the microparticles, giving rise to the formation of different phases–colloidal crystals, crowds, and gels. Using Monte Carlo simulations, we explain how the phases emerge from the interplay between hydrodynamic and electrostatic interactions, as well as the assembly kinetics. Our study demonstrates the promise of self-assembly with programmable shapes and structural order under nonequilibrium conditions using an accessible setup comprising only binary mixtures and LED light.  more » « less
Award ID(s):
2301692
PAR ID:
10578639
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
The Journal of Physical Chemistry B
Volume:
128
Issue:
38
ISSN:
1520-6106
Page Range / eLocation ID:
9244 to 9254
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Exotic structures with interesting physical and chemical properties can be achieved by self-organizing engineered building blocks. The central aim for self-assembly is to precisely control the position and orientation of individual building blocks. In this work, we use topological defects (disclinations) in nematic liquid crystals as templates to direct the self-assembly of colloidal particles into designable 3D structures. By photopatterning preprogrammed molecular orientations at two confining surfaces, we created pre-designable disclination networks and characterized their interactions with spherical colloidal particles. We find that colloidal particles are attracted to different disclinations depending on the orientation of the point defect (elastic dipole) around the colloids. We demonstrate that the positions, network structures, and orientation of the elastic dipoles of the colloidal chains can be pre-designed and reconfigured with remote illumination of polarized light. 
    more » « less
  2. null (Ed.)
    Entropically driven self-assembly of hard anisotropic particles, where particle shape gives rise to emergent valencies, provides a useful perspective for the design of nanoparticle and colloidal systems. Hard particles self-assemble into a rich variety of crystal structures, ranging in complexity from simple close-packed structures to structures with 432 particles in the unit cell. Entropic crystallization of open structures, however, is missing from this landscape. Here, we report the self-assembly of a two-dimensional binary mixture of hard particles into an open host–guest structure, where nonconvex, triangular host particles form a honeycomb lattice that encapsulates smaller guest particles. Notably, this open structure forms in the absence of enthalpic interactions by effectively splitting the structure into low- and high-entropy sublattices. This is the first such structure to be reported in a two-dimensional athermal system. We discuss the observed compartmentalization of entropy in this system, and show that the effect of the size of the guest particle on the stability of the structure gives rise to a reentrant phase behavior. This reentrance suggests the possibility for a reconfigurable colloidal material, and we provide a proof-of-concept by showing the assembly behavior while changing the size of the guest particles in situ . Our findings provide a strategy for designing open colloidal crystals, as well as binary systems that exhibit co-crystallization, which have been elusive thus far. 
    more » « less
  3. Colloidal and nanoparticle self-assembly enables the creation of ordered structures with a variety of electronic and photonic functionalities. The outcomes of the self-assembly processes used to synthesize such structures, however, strongly depend on the uniformity of the individual nanoparticles. Here, we explore the simplest form of particle size dispersity—bidispersity—and its impact on the self-assembly process. We investigate the robustness of self-assembling bcc-type crystals via isotropic interaction potentials in binary systems with increasingly disparate particle sizes by determining their terminal size ratio—the most extreme size ratio at which a mixed binary bcc crystal forms. Our findings show that two-well pair potentials produce bcc crystals that are more robust with respect to particle size ratio than one-well pair potentials. This suggests that an improved self-assembly process is accomplished with a second attractive length scale encoded in the particle–particle interaction, which stabilizes the second-nearest neighbor shell. In addition, we document qualitative differences in the process of ordering and disordering: in bidisperse systems of particles interacting via one-well potentials, we observe a breakdown of order prior to demixing, while in systems interacting via two-well potentials, demixing occurs first and bcc continues to form in parts of the droplet down to low size ratios. 
    more » « less
  4. Chitosan-based nanoparticles are promising materials for potential biomedical applications. We used Flash NanoPrecipitation as a rapid, scalable, single-step method to achieve self-assembly of crosslinked chitosan nanoparticles. Self-assembly was driven by electrostatic interactions, hydrogen bonding, and hydrophobic interactions; tannic acid served to precipitate chitosan to seed nanoparticle formation and crosslink the chitosan to stabilize the resulting particles. The size of the nanoparticles can be tuned by varying formulation parameters including the total solids concentration and block copolymer to core mass ratio. We demonstrated that hydrophobic moieties can be incorporated into the nanoparticle using a lipophilic fluorescent dye as a model system. 
    more » « less
  5. Geometric frustration offers a pathway to soft matter self-assembly with controllable finite sizes. While the understanding of frustration in soft matter assembly derives almost exclusively from continuum elastic descriptions, a current challenge is to understand the connection between microscopic physical properties of misfitting “building blocks” and emergent assembly behavior at the mesoscale. We present and analyze a particle-based description of what is arguably the best studied example for frustrated soft matter assembly, negative-curvature ribbon assembly, observed in both assemblies of chiral surfactants and shape-frustrated nanoparticles. Based on our particle model, known as saddle wedge monomers, we numerically test the connection between microscopic shape and interactions of the misfitting subunits and the emergent behavior at the supra-particle scale, specifically focussing on the propagation and relaxation of inter-particle strains, the emergent role of extrinsic shape on frustrated ribbons and the equilibrium regime of finite width selection. Beyond the intuitive role of shape misfit, we show that self-limitation is critically dependent on the finite range of cohesive interactions, with larger size finite assemblies requiring increasing short-range interparticle forces. Additionally, we demonstrate that non-linearities arising from discrete particle interactions alter self-limiting behavior due to both strain-softening in shape-flattened assembly and partial yielding of highly strained bonds, which in turn may give rise to states of hierarchical, multidomain assembly. Tracing the regimes of frustration-limited assembly to the specific microscopic features of misfitting particle shapes and interactions provides necessary guidance for translating the theory of size-programmable assembly into design of intentionally-frustrated colloidal particles. 
    more » « less