skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Influence of Polycaprolactone Concentration and Solvent Type on the Dimensions and Morphology of Electrosprayed Particles
Polycaprolactone (PCL) micro- and nanoparticles produced using the electrospraying technique present high drug encapsulation capacity, a controllable surface area, and a good cost–benefit ratio. PCL is also considered a non-toxic polymeric material with excellent biocompatibility and biodegradability. All these characteristics make PCL micro- and nanoparticles a promising material for tissue engineering regeneration, drug delivery, and surface modification in dentistry. In this study, PCL electrosprayed specimens were produced and analyzed to determine their morphology and size. Three PCL concentrations (2, 4, and 6 wt%) and three solvent types (chloroform (CF), dimethylformamide (DMF), and acetic acid (AA)) with various solvent mixtures ratios (1:1 CF/DMF, 3:1 CF/DMF, 100% CF, 1:1 AA/CF, 3:1 AA/CF, and 100% AA) were used while keeping the remaining electrospray parameters constant. SEM images followed by ImageJ analysis showed a change in the morphology and size of the particles among various tested groups. A two-way ANOVA demonstrated a statistically significant interaction (p < 0.001) between PCL concentration and solvents on the size of the particles. With the increase in the PCL concentration, an increase in the number of fibers was observed among all the groups. The morphology and dimensions of the electrosprayed particles, as well as the presence of fibers, were significantly dependent on the PCL concentration, choice of solvent, and solvent ratio.  more » « less
Award ID(s):
1757220
PAR ID:
10578739
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Materials
Volume:
16
Issue:
5
ISSN:
1996-1944
Page Range / eLocation ID:
2122
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Polymeric microparticles have been shown to have great impacts in the area of drug delivery, biosensing, and tissue engineering. Electrospray technology, which provides a simple yet effective technique in the creation of microparticles, was utilized in this work. In addition, altering the electrospray experimental parameters such as applied voltage, flow rate, collector distance, solvents, and the polymer-solvent mixtures can result in differences in the size and morphology of the produced microparticles. The effects of the flow rate at (0.15, 0.3, 0.45, 0.6, 0.8, and 1 mL/h) and N, N-Dimethylformamide (DMF)/acetone solvent ratios (20:80, 40:60, 60:40, 80:20, 100:0 v/v) in the production of polyvinylidene fluoride (PVDF) microparticles were studied. Scanning electron microscopy (SEM) was used to observe changes in the morphology of the microparticles, and this revealed that a higher acetone to DMF ratio produces deformed particles, while flow rates at (0.3 and 0.45 mL/h) and a more optimized DMF to acetone solvent ratio (60:40 v/v) produced uniform spherical particles. We discovered from the Raman spectroscopy results that the electrosprayed PVDF microparticles had an increase in piezoelectric β phase compared to the PVDF pellet used in making the microparticles, which in its original form is α phase dominant and non-piezoelectric. 
    more » « less
  2. Abstract Forcespinning technique was used to fabricate sub-micron size polycaprolactone (PCL) fibers. Forcespinning method uses centrifugal forces for the generation of fibers unlike the electrospinning method which uses electrostatic force. PCL has been extensively used as scaffolds for cell regeneration, substrates for tissue engineering and in drug delivery systems. The aim of this study is to qualitatively analyze the force spun fiber mats and investigate the effect of the spinneret rotational speed on the fiber morphology, thermal and mechanical properties. The extracted fibers were characterized by scanning electron microscopy differential scanning calorimetry, tensile testing and dynamic mechanical analysis. The results showed that higher rotational speeds produced uniform fibers with less number of beads. The crystallinity of the fibers decreased with increase in rotational speeds. The Young’s modulus of the forcespun fibers was found to be in the range of 3.5 to 6 MPa. Storage and loss moduli decreased with the increase in the fiber diameter. The fibers collected at farther distance from spinneret exhibited optimal mechanical properties compared to the fibers collected at shorter distances. This study will aid in extracting fibers with uniform geometries and lower beads to achieve the desired nanofiber drug release properties. 
    more » « less
  3. Abstract The survival of patients with glioblastoma multiforme (GBM), the most common and invasive form of malignant brain tumors, remains poor despite advances in current treatment methods including surgery, radiotherapy, and chemotherapy. Minocycline is a semi‐synthetic tetracycline derivative that has been widely used as an antibiotic and more recently, it has been utilized as an antiangiogenic factor to inhibit tumorigenesis. The objective of this study was to investigate the utilization of electrospraying process to fabricate minocycline‐loaded poly(lactic‐co‐glycolic acid) (PLGA) microparticles with high drug loading and loading efficiency and to evaluate their ability to induce cell toxicity in human glioblastoma (i.e., U87‐MG) cells. The results from this study demonstrated that solvent mixture of dicholoromethane (DCM) and methanol is the optimal solvent combination for minocycline and larger amount of methanol (i.e., 70:30) resulted in a higher drug loading. All three solvent ratios of DCM:methanol tested produced microparticles that were both spherical and smooth, all in the micron size range. The electrosprayed microparticles were able to elicit a cytotoxic response in U87‐MG glioblastoma cells at a lower concentration of drug compared to the free drug. This work provides proof of concept to the hypothesis that electrosprayed minocycline‐loaded PLGA microparticles can be a promising agent for the treatment of GBM and could have potential application for cancer therapies. 
    more » « less
  4. Electrospray deposition (ESD) has shown great promise for manufacturing micro- and nanostructured coatings at scale on versatile substrates with complex geometries. ESD exhibits a broad spectrum of morphologies depending upon the properties of spray fluids. Among them are nanowire forests or foams obtained via the in-air gelation of electrospray droplets formed from methylcellulose (MC) solutions. In this study, we explored MC ESD loaded with nanoparticles of various shapes and uncovered the effects of particle fillers on morphology evolution using coarse-grained simulations and physical experiments. Utilizing electrostatic dissipative particle dynamics, we modeled the electrohydrodynamic deformation of particle-laden MC droplets undergoing in-flight evaporation. The simulations quantitatively predict the suppression of droplet deformation as the size or concentration of spherical nanoparticles increases. While small particles can be readily encapsulated into the nanowire body, large particles can arrest nanowire formation. The model was extended to nanoparticles with complex topologies, showing MC nanowires emerging from particle edges and vertices due to curvature-enhanced electric stress. In all cases, strong agreements were found between simulation and experimental results. These results demonstrate the efficacy of the coarse-grained model in predicting the morphology evolution of electrosprayed droplets and lay the groundwork for employing MC nanowires for developing nanostructured composites. 
    more » « less
  5. null (Ed.)
    Solar thermal techniques provide a promising method for the direct conversion of solar energy to thermal energy for applications, such as water desalination. To effectively realize the optimal potential of solar thermal conversion, it is desirable to construct an assembly with localized heating. Specifically, photoactive semiconducting nanoparticles, when utilized as independent light absorbers, have successfully demonstrated the ability to increase solar vapor efficiency. Additionally, bio-based fibers have shown low thermal conductive photocorrosion. In this work, cellulose acetate (CA) fibers were loaded with cadmium selenide (CdSe) nanoparticles to be employed for solar thermal conversion and then subsequently evaluated for both their resulting morphology and conversion potential and efficiency. Electrospinning was employed to fabricate the CdSe-loaded CA fibers by adjusting the CA/CdSe ratio for increased solar conversion efficiency. The microstructural and chemical composition of the CdSe-loaded CA fibers were characterized. Additionally, the optical sunlight absorption performance was evaluated, and it was demonstrated that the CdSe nanoparticles-loaded CA fibers have the potential to significantly improve solar energy absorption. The photothermal conversion under 1 sun (100 mW/cm2) demonstrated that the CdSe nanoparticles could increase the temperature up to 43 °C. The CdSe-loaded CA fibers were shown as a feasible and promising hybrid material for achieving efficient solar thermal conversion. 
    more » « less