The Maker Partnership Program (MPP) is an NSF-supported project that addresses the critical need for models of professional development (PD) and support that help elementary-level science teachers integrate computer science and computational thinking (CS and CT) into their classroom practices. The MPP aims to foster integration of these disciplines through maker pedagogy and curriculum. The MPP was designed as a research-practice partnership that allows researchers and practitioners to collaborate and iteratively design, implement and test the PD and curriculum. This paper describes the key elements of the MPP and early findings from surveys of teachers and students participating in the program. Our research focuses on learning how to develop teachers’ capacity to integrate CS and CT into elementary-level science instruction; understanding whether and how this integrated instruction promotes deeper student learning of science, CS and CT, as well as interest and engagement in these subjects; and exploring how the model may need to be adapted to fit local contexts. Participating teachers reported gaining knowledge and confidence for implementing the maker curriculum through the PDs. They anticipated that the greatest implementation challenges would be lack of preparation time, inaccessible computer hardware, lack of administrative support, and a lack of CS knowledge. Student survey results show that most participants were interested in CS and science at the beginning of the program. Student responses to questions about their disposition toward collaboration and persistence suggest some room for growth. Student responses to questions about who does CS are consistent with prevalent gender stereotypes (e.g., boys are naturally better than girls at computer programming), particularly among boys.
more »
« less
This content will become publicly available on November 1, 2025
Teacher Practices for Formatively Assessing Computational Thinking with Early Elementary Learners
Few studies of computational thinking (CT) integration in elementary curricula have yet focused on supporting early elementary educators with implementing and assessing their young students’ application of these practices to content area work. This paper summarizes a collaborative research project that engaged researchers, K-second grade teachers, and professional development (PD) providers in implementing a hybrid PD model to answer the following research questions: (1) What kind of PD and guidance do teachers need to identify and support emergent computational thinking development in young students’ language and work process? (2) What kind of PD and guidance do teachers need to identify emergent computational thinking development in young students’ work products? This project employed a mixed-methods research design that included pre- and post-surveys and interviews with teachers to measure and understand how growth in teachers’ confidence, knowledge, and self-efficacy with CT prepared them to identify and support these concepts with young learners. Additionally, analysis was able to identify the key formative assessment strategies these teachers employed to generate insight into students’ understanding and application of CT during problem-solving.
more »
« less
- Award ID(s):
- 2101547
- PAR ID:
- 10578862
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Education Sciences
- Volume:
- 14
- Issue:
- 11
- ISSN:
- 2227-7102
- Page Range / eLocation ID:
- 1250
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. We investigated teacher learning within a professional development (PD) workshop series on computational thinking (CT) for elementary-level mentor teachers. The purpose of the PD was to prepare mentor teachers to support preservice teachers in integrating CT into their classroom practice, toward the broader goal of advancing CT for all in the early grades. We examined the ways in which participants collaboratively built on existing professional knowledge as they engaged in professional learning activities designed to introduce CT and related pedagogies for elementary science education. Our data sources were field notes, artifacts, drawings, written reflections, and focus group interviews. We describe how participants developed new understandings of CT integration and made connections to existing professional knowledge of their students, their curriculum, and their school contexts. We discuss implications for teacher learning and PD design relevant to CT, and make recommendations for future research.more » « less
-
Schools throughout the United States are engaging in efforts to integrate computational thinking (CT) across various elementary curricula. However, there is very little guidance for effective approaches to integrating CT consistently and cohesively school wide. CT Readiness for All is a two-year research project that is investigating a CT framework and self-assessment tool developed to articulate indicators associated with successful school-wide integration across elementary curricula. Data sources include focus group interviews and surveys with teachers. Although the project is still in progress, early analysis have resulted in three key findings: (a) students were able to make cross-curricular connections using CT as a problem-solving process; (b) finding time within the school day to focus on CT is challenging; and (c) administrators need to take an active role in setting the vision and definition of CT to support school-wide CT efforts.more » « less
-
In this poster, we present our efforts to engage elementary teachers with learning trajectories as a tool for developing both their own and their students’ comprehension of computational thinking (CT) and strategies for integrating CT learning in their classroom. Eleven teachers, who voluntarily joined a teacher professional development (PD) program to develop teacher leaders for CT integration in the elementary context, attended a one-day PD session aimed at reviewing their knowledge of CT, participating in CT-infused lessons, and engaging with CT learning trajectories. Over the next year, teachers will participate in monthly virtual PD to continue to grow both their CT content knowledge and pedagogical knowledge. Our goal is to develop these teachers as teacher leaders who will support others as they integrate CT. This poster will show our current progress on CT learning trajectories and teacher leaders’ responses to the tool.more » « less
-
Chinn, C.; Tan, E.; & Kali, Y. (Ed.)Computational thinking (CT) is ubiquitous in modern science, yet rarely integrated at the elementary school level. Moreover, access to computer science education at the PK-12 level is inequitably distributed. We believe that access to CT must be available earlier and implemented with the support of an equitable pedagogical framework. Our poster will describe our Accessible Computational Thinking (ACT) research project exploring professional development with elementary teachers on integrating computational thinking with Culturally Responsive Teaching practices.more » « less