skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Advancing Arctic Sea Ice Remote Sensing with AI and Deep Learning: Opportunities and Challenges
Revolutionary advances in artificial intelligence (AI) in the past decade have brought transformative innovation across science and engineering disciplines. In the field of Arctic science, we have witnessed an increasing trend in the adoption of AI, especially deep learning, to support the analysis of Arctic big data and facilitate new discoveries. In this paper, we provide a comprehensive review of the applications of deep learning in sea ice remote sensing domains, focusing on problems such as sea ice lead detection, thickness estimation, sea ice concentration and extent forecasting, motion detection, and sea ice type classification. In addition to discussing these applications, we also summarize technological advances that provide customized deep learning solutions, including new loss functions and learning strategies to better understand sea ice dynamics. To promote the growth of this exciting interdisciplinary field, we further explore several research areas where the Arctic sea ice community can benefit from cutting-edge AI technology. These areas include improving multimodal deep learning capabilities, enhancing model accuracy in measuring prediction uncertainty, better leveraging AI foundation models, and deepening integration with physics-based models. We hope that this paper can serve as a cornerstone in the progress of Arctic sea ice research using AI and inspire further advances in this field.  more » « less
Award ID(s):
2230034
PAR ID:
10579086
Author(s) / Creator(s):
; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Remote Sensing
Volume:
16
Issue:
20
ISSN:
2072-4292
Page Range / eLocation ID:
3764
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent advances in explainable artificial intelligence (XAI) methods show promise for understanding predictions made by machine learning (ML) models. XAI explains how the input features are relevant or important for the model predictions. We train linear regression (LR) and convolutional neural network (CNN) models to make 1-day predictions of sea ice velocity in the Arctic from inputs of present-day wind velocity and previous-day ice velocity and concentration. We apply XAI methods to the CNN and compare explanations to variance explained by LR. We confirm the feasibility of using a novel XAI method [i.e., global layerwise relevance propagation (LRP)] to understand ML model predictions of sea ice motion by comparing it to established techniques. We investigate a suite of linear, perturbation-based, and propagation-based XAI methods in both local and global forms. Outputs from different explainability methods are generally consistent in showing that wind speed is the input feature with the highest contribution to ML predictions of ice motion, and we discuss inconsistencies in the spatial variability of the explanations. Additionally, we show that the CNN relies on both linear and nonlinear relationships between the inputs and uses nonlocal information to make predictions. LRP shows that wind speed over land is highly relevant for predicting ice motion offshore. This provides a framework to show how knowledge of environmental variables (i.e., wind) on land could be useful for predicting other properties (i.e., sea ice velocity) elsewhere. Significance StatementExplainable artificial intelligence (XAI) is useful for understanding predictions made by machine learning models. Our research establishes trustability in a novel implementation of an explainable AI method known as layerwise relevance propagation for Earth science applications. To do this, we provide a comparative evaluation of a suite of explainable AI methods applied to machine learning models that make 1-day predictions of Arctic sea ice velocity. We use explainable AI outputs to understand how the input features are used by the machine learning to predict ice motion. Additionally, we show that a convolutional neural network uses nonlinear and nonlocal information in making its predictions. We take advantage of the nonlocality to investigate the extent to which knowledge of wind on land is useful for predicting sea ice velocity elsewhere. 
    more » « less
  2. The Arctic is a region with unique climate features, motivating new AI methodologies to study it. Unfortunately, Arc- tic sea ice has seen a continuous decline since 1979. This not only poses a significant threat to Arctic wildlife and surrounding coastal communities but is also adversely affecting the global climate patterns. To study the potential of AI in tackling climate change, we analyze the performance of four probabilistic machine learning methods in forecasting sea-ice extent for lead times of up to 6 months, further comparing them with traditional machine learning methods. Our comparative analysis shows that Gaussian Process Regression is a good fit to predict sea-ice extent for longer lead times with lowest RMSE score. 
    more » « less
  3. Important natural resources in the Arctic rely heavily on sea ice, making it important to forecast Arctic sea ice changes. Arctic sea ice forecasting often involves two connected tasks: sea ice concentration at each pixel and overall sea ice extent. Instead of having two separate models for two forecasting tasks, in this report, we study how to use multi-task learning techniques and leverage the connections between ice concentration and ice extent to improve accuracy for both prediction tasks. Because of the spatiotemporal nature of the data, we designed two novel multi-task learning models based on CNNs and ConvLSTMs, respectively. We also developed a custom loss function which trains the models to ignore land pixels when making predictions. Our experiments show our models can have better accuracies than separate models that predict sea ice extent and concentration separately, and that our accuracies are better than or comparable with results in the state-of-the-art studies. 
    more » « less
  4. null (Ed.)
    Abstract Machine learning and artificial intelligence (ML/AI) methods have been used successfully in recent years to solve problems in many areas, including image recognition, unsupervised and supervised classification, game-playing, system identification and prediction, and autonomous vehicle control. Data-driven machine learning methods have also been applied to fusion energy research for over 2 decades, including significant advances in the areas of disruption prediction, surrogate model generation, and experimental planning. The advent of powerful and dedicated computers specialized for large-scale parallel computation, as well as advances in statistical inference algorithms, have greatly enhanced the capabilities of these computational approaches to extract scientific knowledge and bridge gaps between theoretical models and practical implementations. Large-scale commercial success of various ML/AI applications in recent years, including robotics, industrial processes, online image recognition, financial system prediction, and autonomous vehicles, have further demonstrated the potential for data-driven methods to produce dramatic transformations in many fields. These advances, along with the urgency of need to bridge key gaps in knowledge for design and operation of reactors such as ITER, have driven planned expansion of efforts in ML/AI within the US government and around the world. The Department of Energy (DOE) Office of Science programs in Fusion Energy Sciences (FES) and Advanced Scientific Computing Research (ASCR) have organized several activities to identify best strategies and approaches for applying ML/AI methods to fusion energy research. This paper describes the results of a joint FES/ASCR DOE-sponsored Research Needs Workshop on Advancing Fusion with Machine Learning, held April 30–May 2, 2019, in Gaithersburg, MD (full report available at https://science.osti.gov/-/media/fes/pdf/workshop-reports/FES_ASCR_Machine_Learning_Report.pdf ). The workshop drew on broad representation from both FES and ASCR scientific communities, and identified seven Priority Research Opportunities (PRO’s) with high potential for advancing fusion energy. In addition to the PRO topics themselves, the workshop identified research guidelines to maximize the effectiveness of ML/AI methods in fusion energy science, which include focusing on uncertainty quantification, methods for quantifying regions of validity of models and algorithms, and applying highly integrated teams of ML/AI mathematicians, computer scientists, and fusion energy scientists with domain expertise in the relevant areas. 
    more » « less
  5. Abstract Anthropogenic warming has led to an unprecedented year-round reduction in Arctic sea ice extent. This has far-reaching consequences for indigenous and local communities, polar ecosystems, and global climate, motivating the need for accurate seasonal sea ice forecasts. While physics-based dynamical models can successfully forecast sea ice concentration several weeks ahead, they struggle to outperform simple statistical benchmarks at longer lead times. We present a probabilistic, deep learning sea ice forecasting system, IceNet. The system has been trained on climate simulations and observational data to forecast the next 6 months of monthly-averaged sea ice concentration maps. We show that IceNet advances the range of accurate sea ice forecasts, outperforming a state-of-the-art dynamical model in seasonal forecasts of summer sea ice, particularly for extreme sea ice events. This step-change in sea ice forecasting ability brings us closer to conservation tools that mitigate risks associated with rapid sea ice loss. 
    more » « less