skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: A hierarchically porous and SLIT3-releasing scaffold for bone tissue engineering applications
Abstract One of the most fundamental characteristics of a biomaterial tailored for bone repair and regeneration is its ability to promote bone regeneration and healing of large defects. This work reports producing a functionalized and hieratically porous bone scaffold that significantly supports cell adhesion and proliferation by providing bone mimicry structure and controlled release of protein. The Slit Guidance Ligand 3 (SLIT3) protein was previously tested to promote bone formation and control the resorption process in natural bone healing. In this study, our goal was to design a nanocomposite bone scaffold to be functionalized with SLIT3 protein and then evaluate the uptake and release profile from surface into culture media to support bone marrow-derived mesenchymal stem cells (MSC) 3D culture. Indirect 3D printing of a polylactic-co-glycolic acid (PLGA), hydroxyapatite nanoparticles, and polydopamine coated (PLGA-HANPs-PDA) was utilized to obtain a hierarchically porous and SLIT3 protein-releasing scaffold. The produced scaffold was evaluated and optimized using chemical, architectural, mechanical, and biological characterization techniques. Optimal physicochemical properties resulted in a unique microstructure with an average pore size of 178.06 ± 45 µm, 63% porosity, and stable and homogenous chemical composition. Mechanical testing demonstrated a compression strength up to 1.5 MPa at 75% strain, with a compression modulus of 0.58 ± 0.05 MPa. Preliminary biological experiments showed that the scaffold exhibited gradual SLIT3 protein release, biodegradability, and reliable biocompatibility for MSC cell culture. Finally, we showed for first time the bioactivity of SLIT3 protein within PLGA-HANPs-PDA scaffold to promote attachment and growth of mesenchymal stem cell (MSCs) seeded in bone mimicry scaffold matrix. The collected findings will serve as a bedrock for thorough and targeted in vitro studies to evaluate anticipated osteogenesis the MSCs.  more » « less
Award ID(s):
1946202
PAR ID:
10579316
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Springer Science and Business Media LLC
Date Published:
Journal Name:
Journal of Materials Science
Volume:
60
Issue:
1
ISSN:
0022-2461
Page Range / eLocation ID:
414 to 431
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cells encapsulated in 3D hydrogels exhibit differences in cellular mechanosensing based on their ability to remodel their surrounding hydrogel environment. Although cells in tissue interfaces feature a range of mechanosensitive states, it is challenging to recreate this in 3D biomaterials. Human mesenchymal stem cells (MSCs) encapsulated in methacrylated gelatin (GelMe) hydrogels remodel their local hydrogel environment in a time-dependent manner, with a significant increase in cell volume and nuclear Yes-associated protein (YAP) localization between 3 and 5 days in culture. A finite element analysis model of compression showed spatial differences in hydrogel stress of compressed GelMe hydrogels, and MSC-laden GelMe hydrogels were compressed (0–50%) for 3 days to evaluate the role of spatial differences in hydrogel stress on 3D cellular mechanosensing. MSCs in the edge (high stress) were significantly larger, less round, and had increased nuclear YAP in comparison to MSCs in the center (low stress) of 25% compressed GelMe hydrogels. At 50% compression, GelMe hydrogels were under high stress throughout, and this resulted in a consistent increase in MSC volume and nuclear YAP across the entire hydrogel. To recreate heterogeneous mechanical signals present in tissue interfaces, porous polycaprolactone (PCL) scaffolds were perfused with an MSC-laden GelMe hydrogel solution. MSCs in different pore diameter (~280–430 μm) constructs showed an increased range in morphology and nuclear YAP with increasing pore size. Hydrogel stress influences MSC mechanosensing, and porous scaffold-hydrogel composites that expose MSCs to diverse mechanical signals are a unique biomaterial for studying and designing tissue interfaces. 
    more » « less
  2. Abstract Extracellular vesicles (EVs) are implicated as promising therapeutics and drug delivery vehicles in various diseases. However, successful clinical translation will depend on the development of scalable biomanufacturing approaches, especially due to the documented low levels of intrinsic EV‐associated cargo that may necessitate repeated doses to achieve clinical benefit in certain applications. Thus, here the effects of a 3D‐printed scaffold‐perfusion bioreactor system are assessed on the production and bioactivity of EVs secreted from bone marrow‐derived mesenchymal stem cells (MSCs), a cell type widely implicated in generating EVs with therapeutic potential. The results indicate that perfusion bioreactor culture induces an ≈40‐80‐fold increase (depending on measurement method) in MSC EV production compared to conventional cell culture. Additionally, MSC EVs generated using the perfusion bioreactor system significantly improve wound healing in a diabetic mouse model, with increased CD31+staining in wound bed tissue compared to animals treated with flask cell culture‐generated MSC EVs. Overall, this study establishes a promising solution to a major EV translational bottleneck, with the capacity for tunability for specific applications and general improvement alongside advancements in 3D‐printing technologies. 
    more » « less
  3. Effective osteogenesis for bone regeneration is still considerably challenging for a porous β-tricalcium phosphate (β-TCP) scaffold to achieve. To overcome this challenge, hollow manganese dioxide (H-MnO2) nanoparticles with an urchin-like shell structure were prepared and added in the porous β-TCP scaffold. A template-casting method was used to prepare the porous H-MnO2/β-TCP scaffolds. As a control, solid manganese dioxide (S-MnO2) nanoparticles were also added into β-TCP scaffolds. Human bone mesenchymal stem cells (hBMSC) were seeded in the porous scaffolds and characterized through cell viability assay and alkaline phosphatase (ALP) assay. Results from in vitro protein loading and releasing experiments showed that H-MnO2 can load significantly higher proteins and release more proteins compared to S-MnO2 nanoparticles. When they were doped into β-TCP, MnO2 nanoparticles did not significantly change the surface wettability and mechanical properties of porous β-TCP scaffolds. In vitro cell viability results showed that MnO2 nanoparticles promoted cell proliferation in a low dose, but inhibited cell growth when the added concentration went beyond 0.5%. At a range of lower than 0.5%, H-MnO2 doped β-TCP scaffolds promoted the early osteogenesis of hBMSCs. These results suggested that H-MnO2 in the porous β-TCP scaffold has promising potential to stimulate osteogenesis. More studies would be performed to demonstrate the other functions of urchin-like H-MnO2 nanoparticles in the porous β-TCP. 
    more » « less
  4. Introduction: Directing mesenchymal stem cell (MSC) chondrogenesis by bioreactor cultivation provides fundamental insight towards engineering healthy, robust articular cartilage (AC). The mechanical environment is represented by compression, fluid shear stress, hydrostatic pressure, and tension which collectively contribute to the distinct spatial organization of AC. Mimicking this cell niche is necessary for dictating cell growth, fate, and role. Researchers have shown that different mechanical stimulus types improve MSC chondrogenic commitment demonstrated by increases in key chondrogenic gene and protein markers. However, challenges remain in manufacturing spatially, anisotropic AC consisting of defined regions such as native tissue. Our strategy towards furthering this effort involves exposing MSC-laden alginate scaffolds in a multi-chambered, perfusion bioreactor with controlled fluid shear stress magnitudes to better mimic the native AC microenvironment leading to defined regions throughout the scaffold marked by varied cellular phenotypes. Validations made from assessing biochemical content, mRNA expression, western blot analysis, and cell viability will provide meaningful insight towards regulating MSC chondrogenesis. Methods: MSCs grown up to passage 4 were expanded to confluency in a T-175 flask then released from the surface using trypsin. Cells were stored in -80 ℃ freezer until experimentation. Our bioreactor system was sterilized by UV radiation for 4 hours then perfused with 70% ethanol overnight. Cell-laden scaffolds were prepared by first dissolving 1.5% alginate into deionized water. The polymeric solution was sterilely filtered and stored until usage. Cryopreserved MSCs were thawed and suspended in α-MEM medium containing essential supplements. Cells were counted and resuspended in alginate at a density of 106 cells/mL. The mixture was transferred to our multi-chambered bioreactor where they were allowed to crosslink in CaCl2 solution for 45 min. Separate scaffolds (N = 3) were molded within an identical reactor system and removed to serve as a control to compare effects of fluid shear stress on MSC differentiation. All, structures were washed with PBS then supplied with DMEM/F-12 medium containing 10% FBS, 1% penicillin/streptomycin , 1% L-glutamine, 100 nM dexamethasone, 50 µg/mL L-ascorbic acid, and10 ng/mL TGF-β3. The flowrate for the bioreactor was adjusted to 20 mL/min which provided desired fluid shear ranges of 2-87 mPa to stimulate the cells . Cell cultures were grown for 7 days, and medium changed every 3 days. Sectioned samples were analyzed for biochemical content, mRNA expression, and western blot to understand the impact of fluid shear stress magnitudes on MSC differentiation. Results: Directed fluid shear stress across a cell-laden alginate scaffold contained within an individual chamber in our bioreactor indicates varied cellular behavior within the superficial and deep regions of the construct marked by spatially secreted biochemical content as well as mRNA expression. This observation is supported by superficial MSCs stimulated by high and medium mechanical stimulation which indicates a 1.3 and 1.2-fold increase in total collagen production, respectively, when directly compared to cells deep in the construct. A similar effect is supported by total GAG secretion where high and medium shear stress across the fluid hydrogel interface yielded 1.2 and 1.3-fold upregulation of protein secretion, respectively, when observed under similar conditions. Perfused MSCs show upregulation to 3 and 20-fold for Sox9 and aggrecan, respectively, compared to a static culture. Shear ranges distributed throughout our cell-laden alginate scaffold correlates to differential chondrogenic commitment shown by variance of Sox9 expression when assessed by location and depth. Additional information on COL10A1 expression demonstrates mechanical stimulation that reduces hypertrophic cell differentiation contrary to a static culture. Discussion: In this investigation we emphasize that cells respond differently to mechanical stimulation when located in either the superficial or deep region of an alginate scaffold. This observation is supported by enhanced matrix production of chondrogenic protein for cells near the perfused fluid and hydrogel interface compared to deeper areas when stimulated by high and medium fluid shear loading regimes. Most importantly, maintenance of a healthy fluid shear gradient in our TBR provides evidence of promoting MSC chondrogenesis by spatially upregulating anabolic cartilage-like markers in addition to diminishing the onset of cell hypertrophy. Our efforts in monitoring mRNA expression of our samples reveals enhancement of chondrogenic cell differentiation for a perfused sample marked by increases in Sox9 and aggrecan genes; whereas a static sample stimulated only by TGF-β3 leads to undesirable expression of COL10A1. Key takeaways from our study support the contributions from previous researchers in recreating the native AC mechanical environment to encourage MSC differentiation. The development of our TBR system for controlled delivery of fluid shear stresses to MSCs furthers efforts in spatially guiding MSC chondrogenesis which is critical for engineering zonally differentiated AC. 
    more » « less
  5. Human bone demonstrates superior mechanical properties due to its sophisticated hierarchical architecture spanning from the nano/microscopic level to the macroscopic. Bone grafts are in high demand due to the rising number of surgeries because of increasing incidence of orthopedic disorders, non‐union fractures, and injuries in the geriatric population. The bone scaffolds need to provide porous matrix with interconnected porosity for tissue growth as well as sufficient strength to withstand physiological loads, and be compatible with physiological remodeling by osteoclasts/osteoblasts. The‐state‐of‐art additive manufacturing (AM) technologies for bone tissue engineering enable the manipulation of gross geometries, for example, they rely on the gaps between printed materials to create interconnected pores in 3D scaffolds. Herein, the authors firstly print hierarchical and porous hydroxyapatite (HAP) structures with interconnected pores to mimic human bones from microscopic (below 10 µm) to macroscopic (submillimeter to millimeter level) by combining freeze casting and extrusion‐based 3D printing. The compression test of 3D printed scaffold demonstrates superior compressive stress (22 MPa) and strain (4.4%). The human mesenchymal stromal cells (MSCs) tests demonstrate the biocompatibility of printed scaffold. 
    more » « less