Organismal phenotypes often co-vary with environmental variables across broad geographic ranges. Less is known about the extent to which phenotypes match local conditions when multiple biotic and abiotic stressors vary at fine spatial scales. Bittercress (Brassicaceae: Cardamine cordifolia), a perennial forb, grows across a microgeographic mosaic of two contrasting herbivory regimes: high herbivory in meadows (sun habitats) and low herbivory in deeply shaded forest understories (shade habitats). We tested for local phenotypic differentiation in plant size, leaf morphology, and anti-herbivore defense (realized resistance and defensive chemicals, i.e., glucosinolates) across this habitat mosaic through reciprocal transplant–common garden experiments with clonally propagated rhizomes. We found habitat-specific divergence in morphological and defensive phenotypes that manifested as contrasting responses to growth in shade common gardens: weak petiole elongation and attenuated defenses in populations from shade habitats, and strong petiole elongation and elevated defenses in populations from sun habitats. These divergent phenotypes are generally consistent with reciprocal local adaptation: plants from shade habitats that naturally experience low herbivory show reduced investment in defense and an attenuated shade avoidance response, owing to its ineffectiveness within forest understories. By contrast, plants from sun habitats with high herbivory show shade-induced elongation, but no evidence of attenuated defenses canonically associated with elongation in shade-intolerant plant species. Finally, we observed differences in flowering phenology between habitat types that could potentially contribute to inter-habitat divergence by reducing gene flow. This study illuminates how clonally heritable plant phenotypes track a fine-grained mosaic of herbivore pressure and light availability in a native plant.
more »
« less
This content will become publicly available on January 21, 2026
The impact of host biogeography, ecology, evolutionary history, and architecture on the structure of rolled‐leaf beetle assemblages of Costa Rican Zingiberales
Abstract Determining the factors affecting the structure of insect herbivore communities is a major challenge in ecology. Previous research demonstrated that plant defenses determine plant‐herbivore associations. However, non‐defensive variables may also explain why some plant species are associated with more diverse insect herbivore assemblages than others. Neotropical rolled‐leaf beetles (CephaloleiaandChelobasis) complete their life cycle inside the young rolled leaves of their host plants in the order Zingiberales. The diet breadth of each species in this assemblage is particularly well‐known at our study site, La Selva Biological Station in Costa Rica. This study focused on the following non‐defensive variables: host plant elevational and geographic range size, soil type, habitat, local abundance, plant size, and leaf size. Because plant characteristics among closely related plants are not independent, we analyzed these variables in a phylogenetic context. We detected a positive effect of leaf width on rolled‐leaf beetle species richness (explaining 55% of the variation), abundance (28% of the variation and 57% when habitat is included in the model), diversity (37% of the variation), and community structure (6% of the variation, and 21%–26% when taxonomic family is included in the model). Our study demonstrates that Zingiberales leaf width influences positively rolled‐leaf beetle species richness, abundance, and diversity. This effect varies among plant families. Our study shows that plant architecture plays an important role in structuring insect herbivore assemblages in Zingiberales. Our results highlight the importance of including variables beyond plant defenses to understand the ecology and evolution of plant‐herbivore interactions.
more »
« less
- Award ID(s):
- 2222328
- PAR ID:
- 10579393
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Biotropica
- Volume:
- 57
- Issue:
- 1
- ISSN:
- 0006-3606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Species richness in tropical forests is correlated with other dimensions of diversity, including the diversity of plant–herbivore interactions and the phytochemical diversity that influences those interactions. Understanding the complexity of plant chemistry and the importance of phytochemical diversity for plant–insect interactions and overall forest richness has been enhanced significantly by the application of metabolomics to natural systems. The present work used proton nuclear magnetic resonance spectroscopy (1H‐NMR) profiling of crude leaf extracts to study phytochemical similarity and diversity amongPiperplants growing naturally in the Atlantic Rainforest of Brazil. Spectral profile similarity and chemical diversity were quantified to examine the relationship between metrics of phytochemical diversity, specialist and generalist herbivory, and understory plant richness. Herbivory increased with understory species richness, while generalist herbivory increased and specialist herbivory decreased with the diversity ofPiperleaf material available. Specialist herbivory increased when conspecific host plants were more spectroscopically dissimilar. Spectral similarity was lower among individuals of common species, and they were also more spectrally diverse, indicating phytochemical diversity is beneficial to plants. Canopy openness and soil nutrients also influenced chemistry and herbivory. The complex relationships uncovered in this study add information to our growing understanding of the importance of phytochemical diversity for plant–insect interactions and tropical plant species richness.more » « less
-
Virtually all plants employ direct and indirect defenses against herbivores. While it is known that plant defenses can be affected by belowground symbiotic microbes under controlled conditions, studies showing these multitrophic interactions in nature are surprisingly scarce. Here we tested for effects of rhizobia on insect attraction and direct defense (cyanogenesis) in wild lima bean (Phaseolus lunatus) plants in Costa Rica. We performed bioassays with rhizobia-inoculated (R+) and rhizobiafree (R-) potted plants distributed among native lima bean communities at two spatially separated field sites (450 km apart) and in two field seasons. Without affecting overall plant size, rhizobia altered leaf chemistry (cyanogenesis and soluble leaf nitrogen) and ultimately insect communities visiting the plants. Natural herbivorous chrysomelid beetles were strongly attracted to R+ plants, while natural enemies, ants and parasitoid wasps, preferred R- plants resulting in a particularly high herbivore:carnivore ratio on R + plants. This suggests that symbiotic microbes mediate trophic interactions by influencing both direct and indirect plant defenses against herbivores. Our results show that rhizobia affect the plant defensive phenotype and have cascading effects on plant-insect interactions in nature.more » « less
-
Insect herbivory can be an important selective pressure and contribute substantially to local plant richness. As herbivory is the result of numerous ecological and evolutionary processes, such as complex insect population dynamics and evolution of plant antiherbivore defenses, it has been difficult to predict variation in herbivory across meaningful spatial scales. In the present work, we characterize patterns of herbivory on plants in a species‐rich and abundant tropical genus (Piper) across forests spanning 44° of latitude in the Neotropics. We modeled the effects of geography, climate, resource availability, andPiperspecies richness on the median, dispersion, and skew of generalist and specialist herbivory. By examining these multiple components of the distribution of herbivory, we were able to determine factors that increase biologically meaningful herbivory at the upper ends of the distribution (indicated by skew and dispersion). We observed a roughly twofold increase in median herbivory in humid relative to seasonal forests, which aligns with the hypothesis that precipitation seasonality plays a critical role in shaping interaction diversity within tropical ecosystems. Site level variables such as latitude, seasonality, and maximumPiperrichness explained the positive skew in herbivory at the local scale (plot level) better for assemblages ofPipercongeners than for a single species. Predictors that varied between local communities, such as resource availability and diversity, best explained the distribution of herbivory within sites, dampening broad patterns across latitude and climate and demonstrating why generalizations about gradients in herbivory have been elusive. The estimated population means, dispersion, and skew of herbivory responded differently to abiotic and biotic factors, illustrating the need for careful studies to explore distributions of herbivory and their effects on forest diversity.more » « less
-
Abstract ContextHabitat fragmentation is a leading threat to biodiversity, yet the impacts of fragmentation on most taxa, let alone interactions among those taxa, remain largely unknown. ObjectivesWe studied how three consequences of fragmentation—reduced patch connectivity, altered patch shape, and edge proximity—impact plant-dwelling mite communities and mite-plant-fungus interactions within a large-scale habitat fragmentation experiment. MethodsWe sampled mite communities from the leaves ofQuercus nigra(a plant species that has foliar domatia which harbor fungivorous and predacious mites) near and far from edge within fragments of varying edge-to-area ratio (shape) and connectivity via corridors. We also performed a mite-exclusion experiment across these fragmentation treatments to test the effects of mite presence and fungal hyphal abundance on leaf surfaces. ResultsHabitat edges influenced the abundance and richness of leaf-dwelling mites; plants closer to the edge had higher mite abundance and species richness. Likewise, hyphal counts were higher on leaves near patch edges. Despite both mite and fungal abundance being higher at patch edges, leaf hyphal counts were not impacted by mite abundance on those leaves. Neither patch shape nor connectivity influenced mite abundance, mite species richness, or the influence of mites on leaf surface fungal abundance. ConclusionOur results suggest that mites and foliar fungi may be independently affected by edge-structured environmental gradients, like temperature, rather than trophic effects. We demonstrate that large-scale habitat fragmentation and particularly edge effects can have impacts on multiple levels of microscopic communities, even in the absence of cascading trophic effects.more » « less
An official website of the United States government
