Abstract Mixotrophic protists combine photosynthesis and phagotrophy to obtain energy and nutrients. Because mixotrophs can act as either primary producers or consumers, they have a complex role in marine food webs and biogeochemical cycles. Many mixotrophs are also phenotypically plastic and can adjust their metabolic investments in response to resource availability. Thus, a single species's ecological role may vary with environmental conditions. Here, we quantified how light and food availability impacted the growth rates, energy acquisition rates, and metabolic investment strategies of eight strains of the mixotrophic chrysophyte,Ochromonas. All eightOchromonasstrains photoacclimated by decreasing chlorophyll content as light intensity increased. Some strains were obligate phototrophs that required light for growth, while other strains showed stronger metabolic responses to prey availability. When prey availability was high, all eight strains exhibited accelerated growth rates and decreased their investments in both photosynthesis and phagotrophy. Photosynthesis and phagotrophy generally produced additive benefits: In low‐prey environments,Ochromonasgrowth rates increased to maximum, light‐saturated rates with increasing light but increased further with the addition of abundant bacterial prey. The additive benefits observed between photosynthesis and phagotrophy inOchromonassuggest that the two metabolic modes provide nonsubstitutable resources, which may explain why a tradeoff between phagotrophic and phototrophic investments emerged in some but not all strains.
more »
« less
This content will become publicly available on December 13, 2025
Predicting optimal mixotrophic metabolic strategies in the global ocean
Mixotrophic protists combine photosynthesis with the ingestion of prey to thrive in resource-limited conditions in the ocean. Yet, how they fine-tune resource investments between their two different metabolic strategies remains unclear. Here, we present a modeling framework (Mixotroph Optimal Contributions to Heterotrophy and Autotrophy) that predicts the optimal (growth-maximizing) investments of carbon and nitrogen as a function of environmental conditions. Our model captures a full spectrum of trophic modes, in which the optimal investments reflect zero-waste solutions (i.e., growth is colimited by carbon and nitrogen) and accurately reproduces experimental results. By fitting the model to data forOchromonas, we were able to predict metabolic strategies at a global scale. We find that high phagotrophic investment is the dominant strategy across different oceanic biomes, used primarily for nitrogen acquisition. Our results therefore support empirical observations of the importance of mixotrophic grazers to upper ocean bacterivory.
more »
« less
- Award ID(s):
- 2237017
- PAR ID:
- 10579639
- Publisher / Repository:
- Science
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 10
- Issue:
- 50
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A warmer ocean will change plankton physiological rates, alter plankton community composition, and in turn affect ecosystem functions, such as primary production, recycling, and carbon export. To predict how temperature changes affect plankton community dynamics and function, we developed a mechanistic trait‐based model of unicellular plankton (auto‐hetero‐mixotrophic protists and bacteria). Temperature dependencies are specifically implemented on cellular process rather than at the species level. As the uptake of resources and metabolic processes have different temperature dependencies, changes in the thermal environment will favor organisms with different investments in processes such as photosynthesis and biosynthesis. The precise level of investments, however, is conditional on the limiting process and is ultimately determined dynamically by competition and predation within the emergent community of the water column. We show how an increase in temperature can intensify nutrient limitation by altering organisms' interactions, and reduce relative cell‐size in the community. Further, we anticipate that a combination of temperature and resource limitation reduces ecosystem efficiency at capturing carbon due to strengthening of the microbial loop. By explicitly representing the effects of temperature on traits responsible for growth, we demonstrate how changes on the individual level can be scaled up to trends at the ecosystem level, helping to discern direct from indirect effects of temperature on natural plankton communities.more » « less
-
Anil, Arga Chandrashekar (Ed.)There is little information on the impacts of climate change on resource partitioning for mixotrophic phytoplankton. Here, we investigated the hypothesis that light interacts with temperature and CO 2 to affect changes in growth and cellular carbon and nitrogen content of the mixotrophic dinoflagellate, Karlodinium veneficum , with increasing cellular carbon and nitrogen content under low light conditions and increased growth under high light conditions. Using a multifactorial design, the interactive effects of light, temperature and CO 2 were investigated on K . veneficum at ambient temperature and CO 2 levels (25°C, 375 ppm), high temperature (30°C, 375 ppm CO 2 ), high CO 2 (30°C, 750 ppm CO 2 ), or a combination of both high temperature and CO 2 (30°C, 750 ppm CO 2 ) at low light intensities (LL: 70 μmol photons m -2 s -2 ) and light-saturated conditions (HL: 140 μmol photons m -2 s -2 ). Results revealed significant interactions between light and temperature for all parameters. Growth rates were not significantly different among LL treatments, but increased significantly with temperature or a combination of elevated temperature and CO 2 under HL compared to ambient conditions. Particulate carbon and nitrogen content increased in response to temperature or a combination of elevated temperature and CO 2 under LL conditions, but significantly decreased in HL cultures exposed to elevated temperature and/or CO 2 compared to ambient conditions at HL. Significant increases in C:N ratios were observed only in the combined treatment under LL, suggesting a synergistic effect of temperature and CO 2 on carbon assimilation, while increases in C:N under HL were driven only by an increase in CO 2 . Results indicate light-driven variations in growth and nutrient acquisition strategies for K . veneficum that may benefit this species under anticipated climate change conditions (elevated light, temperature and p CO 2 ) while also affecting trophic transfer efficiency during blooms of this species.more » « less
-
Hallam, Steven J. (Ed.)ABSTRACT Nitrite-oxidizing bacteria belonging to the genus Nitrospira mediate a key step in nitrification and play important roles in the biogeochemical nitrogen cycle and wastewater treatment. While these organisms have recently been shown to exhibit metabolic flexibility beyond their chemolithoautotrophic lifestyle, including the use of simple organic compounds to fuel their energy metabolism, the metabolic networks controlling their autotrophic and mixotrophic growth remain poorly understood. Here, we reconstructed a genome-scale metabolic model for Nitrospira moscoviensis ( i Nmo686) and used flux balance analysis to evaluate the metabolic networks controlling autotrophic and formatotrophic growth on nitrite and formate, respectively. Subsequently, proteomic analysis and [ 13 C]bicarbonate and [ 13 C]formate tracer experiments coupled to metabolomic analysis were performed to experimentally validate model predictions. Our findings corroborate that N. moscoviensis uses the reductive tricarboxylic acid cycle for CO 2 fixation, and we also show that N. moscoviensis can indirectly use formate as a carbon source by oxidizing it first to CO 2 followed by reassimilation, rather than direct incorporation via the reductive glycine pathway. Our study offers the first measurements of Nitrospira ’s in vivo central carbon metabolism and provides a quantitative tool that can be used for understanding and predicting their metabolic processes. IMPORTANCE Nitrospira spp. are globally abundant nitrifying bacteria in soil and aquatic ecosystems and in wastewater treatment plants, where they control the oxidation of nitrite to nitrate. Despite their critical contribution to nitrogen cycling across diverse environments, detailed understanding of their metabolic network and prediction of their function under different environmental conditions remains a major challenge. Here, we provide the first constraint-based metabolic model of Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II and subsequently validate this model using proteomics and 13 C-tracers combined with intracellular metabolomic analysis. The resulting genome-scale model will serve as a knowledge base of Nitrospira metabolism and lays the foundation for quantitative systems biology studies of these globally important nitrite-oxidizing bacteria.more » « less
-
Mixotrophy, the combination of autotrophic and heterotrophic nutrition, is a common trophic strategy among unicellular eukaryotes in the ocean. There are a number of hypotheses about the conditions that select for mixotrophy, and field studies have documented the prevalence of mixotrophy in a range of environments. However, there is currently little evidence for how mixotrophy varies across environmental gradients, and whether empirical patterns support theoretical predictions. Here I synthesize experiments that have quantified the abundance of phototrophic, mixotrophic, and heterotrophic nanoflagellates, to ask whether there are broad patterns in the prevalence of mixotrophy (relative to pure autotrophy and heterotrophy), and to ask whether observed patterns are consistent with a trait-based model of trophic strategies. The data suggest that mixotrophs increase in abundance at lower latitudes, while autotrophs and heterotrophs do not, and that this may be driven by increased light availability. Both mixotrophs and autotrophs increase greatly in productive coastal environments, while heterotrophs increase only slightly. These patterns are consistent with a model of resource competition in which nutrients and carbon can both limit growth and mixotrophs experience a trade-off in allocating biomass to phagotrophy vs. autotrophic functions. Importantly, mixotrophy is selected for under a range of conditions even when mixotrophs experience a penalty for using a generalist trophic strategy, due to the synergy between photosynthetically derived carbon and prey-derived nutrients. For this reason mixotrophy is favored relative to specialist strategies by increased irradiance, while at the same time increased nutrient supply increases the competitive ability of mixotrophs against heterotrophs.more » « less