skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Carrier‐Free, Amorphous Verteporfin Nanodrug for Enhanced Photodynamic Cancer Therapy and Brain Drug Delivery
Abstract Glioblastoma (GBM) is hard to treat due to cellular invasion into functioning brain tissues, limited drug delivery, and evolved treatment resistance. Recurrence is nearly universal even after surgery, chemotherapy, and radiation. Photodynamic therapy (PDT) involves photosensitizer administration followed by light activation to generate reactive oxygen species at tumor sites, thereby killing cells or inducing biological changes. PDT can ablate unresectable GBM and sensitize tumors to chemotherapy. Verteporfin (VP) is a promising photosensitizer that relies on liposomal carriers for clinical use. While lipids increase VP's solubility, they also reduce intracellular photosensitizer accumulation. Here, a pure‐drug nanoformulation of VP, termed “NanoVP”, eliminating the need for lipids, excipients, or stabilizers is reported. NanoVP has a tunable size (65–150 nm) and 1500‐fold higher photosensitizer loading capacity than liposomal VP. NanoVP shows a 2‐fold increase in photosensitizer uptake and superior PDT efficacy in GBM cells compared to liposomal VP. In mouse models, NanoVP‐PDT improved tumor control and extended animal survival, outperforming liposomal VP and 5‐aminolevulinic acid (5‐ALA). Moreover, low‐dose NanoVP‐PDT can safely open the blood‐brain barrier, increasing drug accumulation in rat brains by 5.5‐fold compared to 5‐ALA. NanoVP is a new photosensitizer formulation that has the potential to facilitate PDT for the treatment of GBM.  more » « less
Award ID(s):
2030253
PAR ID:
10579746
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Science
Volume:
11
Issue:
17
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundGlioblastoma Multiforme, an aggressive primary brain tumor, has a poor prognosis and no effective standard of care treatments. Most patients undergoing radiotherapy, along with Temozolomide chemotherapy, develop resistance to the drug, and recurrence of the tumor is a common issue after the treatment. We propose to model the pathways active in Glioblastoma using Boolean network techniques. The network captures the genetic interactions and possible mutations that are involved in the development of the brain tumor. The model is used to predict the theoretical efficacies of drugs for the treatment of cancer. ResultsWe use the Boolean network to rank the critical intervention points in the pathway to predict an effective therapeutic strategy for Glioblastoma. Drug repurposing helps to identify non-cancer drugs that could be effective in cancer treatment. We predict the effectiveness of drug combinations of anti-cancer and non-cancer drugs for Glioblastoma. ConclusionsGiven the genetic profile of a GBM tumor, the Boolean model can predict the most effective targets for treatment. We also identified two-drug combinations that could be more effective in killing GBM cells than conventional chemotherapeutic agents. The non-cancer drug Aspirin could potentially increase the cytotoxicity of TMZ in GBM patients. 
    more » « less
  2. Abstract Glioblastoma multiforme (GBM) is the most lethal primary brain tumor characterized by high cellular and molecular heterogeneity, hypervascularization, and innate drug resistance. Cellular components and extracellular matrix (ECM) are the two primary sources of heterogeneity in GBM. Here, biomimetic tri‐regional GBM models with tumor regions, acellular ECM regions, and an endothelial region with regional stiffnesses patterned corresponding to the GBM stroma, pathological or normal brain parenchyma, and brain capillaries, are developed. Patient‐derived GBM cells, human endothelial cells, and hyaluronic acid derivatives are used to generate a species‐matched and biochemically relevant microenvironment. This in vitro study demonstrates that biophysical cues are involved in various tumor cell behaviors and angiogenic potentials and promote different molecular subtypes of GBM. The stiff models are enriched in the mesenchymal subtype, exhibit diffuse invasion of tumor cells, and induce protruding angiogenesis and higher drug resistance to temozolomide. Meanwhile, the soft models demonstrate enrichment in the classical subtype and support expansive cell growth. The three‐dimensional bioprinting technology utilized in this study enables rapid, flexible, and reproducible patient‐specific GBM modeling with biophysical heterogeneity that can be employed by future studies as a tunable system to interrogate GBM disease mechanisms and screen drug compounds. 
    more » « less
  3. Abstract The survival of patients with glioblastoma multiforme (GBM), the most common and invasive form of malignant brain tumors, remains poor despite advances in current treatment methods including surgery, radiotherapy, and chemotherapy. Minocycline is a semi‐synthetic tetracycline derivative that has been widely used as an antibiotic and more recently, it has been utilized as an antiangiogenic factor to inhibit tumorigenesis. The objective of this study was to investigate the utilization of electrospraying process to fabricate minocycline‐loaded poly(lactic‐co‐glycolic acid) (PLGA) microparticles with high drug loading and loading efficiency and to evaluate their ability to induce cell toxicity in human glioblastoma (i.e., U87‐MG) cells. The results from this study demonstrated that solvent mixture of dicholoromethane (DCM) and methanol is the optimal solvent combination for minocycline and larger amount of methanol (i.e., 70:30) resulted in a higher drug loading. All three solvent ratios of DCM:methanol tested produced microparticles that were both spherical and smooth, all in the micron size range. The electrosprayed microparticles were able to elicit a cytotoxic response in U87‐MG glioblastoma cells at a lower concentration of drug compared to the free drug. This work provides proof of concept to the hypothesis that electrosprayed minocycline‐loaded PLGA microparticles can be a promising agent for the treatment of GBM and could have potential application for cancer therapies. 
    more » « less
  4. null (Ed.)
    Glioblastoma (GBM) is one of the most aggressive forms of adult brain cancers and is highly resistant to treatment, with a median survival of 12–18 months after diagnosis. The poor survival is due to its infiltrative pattern of invasion into the normal brain parenchyma, the diffuse nature of its growth, and its ability to quickly grow, spread, and relapse. Temozolomide is a well-known FDA-approved alkylating chemotherapy agent used for the treatment of high-grade malignant gliomas, and it has been shown to improve overall survival. However, in most cases, the tumor relapses. In recent years, CAP has been used as an emerging technology for cancer therapy. The purpose of this study was to implement a combination therapy of CAP and TMZ to enhance the effect of TMZ and apparently sensitize GBMs. In vitro evaluations in TMZ-sensitive and resistant GBM cell lines established a CAP chemotherapy enhancement and potential sensitization effect across various ranges of CAP jet application. This was further supported with in vivo findings demonstrating that a single CAP jet applied non-invasively through the skull potentially sensitizes GBM to subsequent treatment with TMZ. Gene functional enrichment analysis further demonstrated that co-treatment with CAP and TMZ resulted in a downregulation of cell cycle pathway genes. These observations indicate that CAP can be potentially useful in sensitizing GBM to chemotherapy and for the treatment of glioblastoma as a non-invasive translational therapy. 
    more » « less
  5. Abstract Cisplatin, the first platinum chemotherapy agent to obtain Food and Drug Administration (FDA) approval in 1978, is widely used for a number of cancers. However, the painful side effects stemming from systemic delivery are the inevitable limitation of cisplatin. A possible solution is regional chemotherapy using various drug delivery systems, which reduces the systemic toxicity and increases drug accumulation in the tumor. In this paper, a rice‐grain sized, ultrasonically powered, and implantable microdevice that can synthesize cisplatin in situ is presented. The microdevice produces 0.7 mg of cisplatin within 1 h under ultrasonic irradiation (400 mW cm−2). The effect of the microdevice‐synthesized cisplatin is evaluated using in vitro murine breast cancer cells and ex vivo liver tissue. The results suggest that cytotoxic activities of the microdevice‐mediated cisplatin delivery are significantly higher in both in vitro and ex vivo experiments. Overall, the proposed cisplatin synthesis microdevice represents a strong alternative treatment option for regional chemotherapy 
    more » « less