skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating Collaborative Problem Solving Behaviors during STEM+C Learning in Groups with Different Prior Knowledge Distributions
In collaborative problem-solving (CPS), students work together to solve problems using their collective knowledge and social interactions to understand the problem and progress towards a solution. This study focuses on how students engage in CPS while working in pairs in a STEM+C (Science, Technology, Engineering, Mathematics, and Computing) environment that involves open-ended computational modeling tasks. Specifically, we study how groups with different prior knowledge in physics and computing concepts differ in their information pooling and consensus-building behaviors. In addition, we examine how these differences impact the development of their shared understanding and learning. Our study consisted of a high school kinematics curriculum with 1D and 2D modeling tasks. Using an exploratory approach, we performed in-depth case studies to analyze the behaviors of groups with different prior knowledge distributions across these tasks. We identify effective information pooling and consensus-building behaviors in addition to difficulties students faced when developing a shared understanding of physics and computing concepts.  more » « less
Award ID(s):
2017000
PAR ID:
10579822
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Clarke-Midura, J; Kollar, I; Gu, X; D’Angelo, C
Publisher / Repository:
International Society for the Learning Sciences (ISLS)
Date Published:
Page Range / eLocation ID:
107 to 114
Subject(s) / Keyword(s):
STEM+C collaborative learning metacognitive behaviors planning enacting monitoring reflection high and low performers
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Grieff, S. (Ed.)
    Recently there has been increased development of curriculum and tools that integrate computing (C) into Science, Technology, Engineering, and Math (STEM) learning environments. These environments serve as a catalyst for authentic collaborative problem-solving (CPS) and help students synergistically learn STEM+C content. In this work, we analyzed students’ collaborative problem-solving behaviors as they worked in pairs to construct computational models in kinematics. We leveraged social measures, such as equity and turn-taking, along with a domain-specific measure that quantifies the synergistic interleaving of science and computing concepts in the students’ dialogue to gain a deeper understanding of the relationship between students’ collaborative behaviors and their ability to complete a STEM+C computational modeling task. Our results extend past findings identifying the importance of synergistic dialogue and suggest that while equitable discourse is important for overall task success, fluctuations in equity and turn-taking at the segment level may not have an impact on segment-level task performance. To better understand students’ segment-level behaviors, we identified and characterized groups’ planning, enacting, and reflection behaviors along with monitoring processes they employed to check their progress as they constructed their models. Leveraging Markov Chain (MC) analysis, we identified differences in high- and low-performing groups’ transitions between these phases of students’ activities. We then compared the synergistic, turn-taking, and equity measures for these groups for each one of the MC model states to gain a deeper understanding of how these collaboration behaviors relate to their computational modeling performance. We believe that characterizing differences in collaborative problem-solving behaviors allows us to gain a better understanding of the difficulties students face as they work on their computational modeling tasks. 
    more » « less
  2. Rodrigo, M.M. (Ed.)
    Successful knowledge co-construction during collaborative learning requires students to develop a shared conceptual understanding of the domain through effective social interactions. Developing and applying shared understanding of concepts and practices is directly impacted by the prior knowledge that students bring to their interactions. We present a systematic approach to analyze students’ knowledge co-construction processes as they work through a physics curriculum that includes inquiry activities, instructional tasks, and computational model-building activities. Utilizing a combination of students’ activity logs and discourse analysis, we assess how students’ knowledge impacts their knowledge co-construction processes. We hope a better understanding of how students’ co-construction processes develop and the difficulties they face will lead to better adaptive scaffolding of students’ learning and better support for collaborative learning. 
    more » « less
  3. Recently, there has been a surge in developing curricula and tools that integrate computing (C) into Science, Technology, Engineering, and Math (STEM) programs. These environments foster authentic problem-solving while facilitating students’ concurrent learning of STEM+C content. In our study, we analyzed students’ behaviors as they worked in pairs to create computational kinematics models of object motion. We derived a domain-specific metric from students’ collaborative dialogue that measured how they integrated science and computing concepts into their problem-solving tasks. Additionally, we computed social metrics such as equity and turn-taking based on the students’ dialogue. We identified and characterized students’ planning, enacting, monitoring, and reflecting behaviors as they worked together on their model construction tasks. This study in-vestigates the impact of students’ collaborative behaviors on their performance in STEM+C computational modeling tasks. By analyzing the relationships between group synergy, turn-taking, and equity measures with task performance, we provide insights into how these collaborative behaviors influence students’ ability to construct accurate models. Our findings underscore the importance of synergistic discourse for overall task success, particularly during the enactment, monitoring, and reflection phases. Conversely, variations in equity and turn-taking have a minimal impact on segment-level task performance. 
    more » « less
  4. null (Ed.)
    Engineering graduates need a deep understanding of key concepts in addition to technical skills to be successful in the workforce. However, traditional methods of instruction (e.g., lecture) do not foster deep conceptual understanding and make it challenging for students to learn the technical skills, (e.g., professional modeling software), that they need to know. This study builds on prior work to assess engineering students’ conceptual and procedural knowledge. The results provide an insight into how the use of authentic online learning modules influence engineering students’ conceptual knowledge and procedural skills. We designed online active learning modules to support and deepen undergraduate students’ understanding of key concepts in hydrology and water resources engineering (e.g., watershed delineation, rainfall-runoff processes, design storms), as well as their technical skills (e.g., obtaining and interpreting relevant information for a watershed, proficiency using HEC-HMS and HEC-RAS modeling tools). These modules integrated instructional content, real data, and modeling resources to support students’ solving of complex, authentic problems. The purpose of our study was to examine changes in students’ self-reported understanding of concepts and skills after completing these modules. The participants in this study were 32 undergraduate students at a southern U.S. university in a civil engineering senior design course who were assigned four of these active learning modules over the course of one semester to be completed outside of class time. Participants completed the Student Assessment of Learning Gains (SALG) survey immediately before starting the first module (time 1) and after completing the last module (time 2). The SALG is a modifiable survey meant to be specific to the learning tasks that are the focus of instruction. We created versions of the SALG for each module, which asked students to self-report their understanding of concepts and ability to implement skills that are the focus of each module. We calculated learning gains by examining differences in students’ self-reported understanding of concepts and skills from time 1 to time 2. Responses were analyzed using eight paired samples t-tests (two for each module used, concepts and skills). The analyses suggested that students reported gains in both conceptual knowledge and procedural skills. The data also indicated that the students’ self-reported gain in skills was greater than their gain in concepts. This study provides support for enhancing student learning in undergraduate hydrology and water resources engineering courses by connecting conceptual knowledge and procedural skills to complex, real-world problems. 
    more » « less
  5. null (Ed.)
    Engineering graduates need a deep understanding of key concepts in addition to technical skills to be successful in the workforce. However, traditional methods of instruction (e.g., lecture) do not foster deep conceptual understanding and make it challenging for students to learn the technical skills, (e.g., professional modeling software), that they need to know. This study builds on prior work to assess engineering students’ conceptual and procedural knowledge. The results provide an insight into how the use of authentic online learning modules influence engineering students’ conceptual knowledge and procedural skills. We designed online active learning modules to support and deepen undergraduate students’ understanding of key concepts in hydrology and water resources engineering (e.g., watershed delineation, rainfall-runoff processes, design storms), as well as their technical skills (e.g., obtaining and interpreting relevant information for a watershed, proficiency using HEC-HMS and HEC-RAS modeling tools). These modules integrated instructional content, real data, and modeling resources to support students’ solving of complex, authentic problems. The purpose of our study was to examine changes in students’ self-reported understanding of concepts and skills after completing these modules. The participants in this study were 32 undergraduate students at a southern U.S. university in a civil engineering senior design course who were assigned four of these active learning modules over the course of one semester to be completed outside of class time. Participants completed the Student Assessment of Learning Gains (SALG) survey immediately before starting the first module (time 1) and after completing the last module (time 2). The SALG is a modifiable survey meant to be specific to the learning tasks that are the focus of instruction. We created versions of the SALG for each module, which asked students to self-report their understanding of concepts and ability to implement skills that are the focus of each module. We calculated learning gains by examining differences in students’ self-reported understanding of concepts and skills from time 1 to time 2. Responses were analyzed using eight paired samples t-tests (two for each module used, concepts and skills). The analyses suggested that students reported gains in both conceptual knowledge and procedural skills. The data also indicated that the students’ self-reported gain in skills was greater than their gain in concepts. This study provides support for enhancing student learning in undergraduate hydrology and water resources engineering courses by connecting conceptual knowledge and procedural skills to complex, real-world problems. 
    more » « less